Assessment of DeepONet for time dependent reliability analysis of dynamical systems subjected to stochastic loading

水准点(测量) 可靠性(半导体) 计算机科学 替代模型 不确定度量化 功能(生物学) 非线性系统 操作员(生物学) 人工神经网络 动力系统理论 高斯过程 随机过程 高斯分布 数学优化 机器学习 人工智能 算法 数学 统计 功率(物理) 生物化学 物理 化学 大地测量学 抑制因子 量子力学 进化生物学 转录因子 基因 生物 地理
作者
Shailesh Garg,Harshit Gupta,Souvik Chakraborty
出处
期刊:Engineering Structures [Elsevier]
卷期号:270: 114811-114811
标识
DOI:10.1016/j.engstruct.2022.114811
摘要

Time dependent reliability analysis and uncertainty quantification of structural system subjected to stochastic forcing function is a challenging endeavour as it necessitates considerable computational time. We investigate the efficacy of recently proposed DeepONet in solving time dependent reliability analysis and uncertainty quantification of systems subjected to stochastic loading. Unlike conventional machine learning and deep learning algorithms, DeepONet is an operator network and learns a function to function mapping and hence, is ideally suited to propagate the uncertainty from the stochastic forcing function to the output responses. We use DeepONet to build a surrogate model for the dynamical system under consideration. Multiple case studies, involving both toy and benchmark problems, have been conducted to examine the efficacy of DeepONet in time dependent reliability analysis and uncertainty quantification of linear and nonlinear dynamical systems. Comparisons have also been drawn with Recurrent Neural Network results and with results obtained from Proper Orthogonal Decomposition based Gaussian process. The results obtained indicate that the DeepONet architecture is accurate as well as efficient. Moreover, DeepONet posses zero shot learning capabilities and hence, a trained model easily generalizes to unseen and new environment with no further training. • We investigate DeepONet for time-dependent reliability analysis. • DeepOnet learns operator and allows zero shot learning. • DeepONet accurately captures probability of failure and PDF of FPFT. • DeepONet is highly efficient and yields accurate results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吕完成签到,获得积分10
1秒前
qgyj完成签到,获得积分10
1秒前
丘比特应助Jes采纳,获得30
2秒前
田様应助香菜头采纳,获得10
2秒前
情怀应助皮咻采纳,获得10
2秒前
3秒前
3秒前
QX发布了新的文献求助10
4秒前
含蓄半邪完成签到,获得积分10
4秒前
4秒前
烟花应助一叶扁舟采纳,获得10
5秒前
xzy998应助cij123采纳,获得10
5秒前
5秒前
科研通AI2S应助自然的雁蓉采纳,获得20
6秒前
含蓄半邪发布了新的文献求助10
7秒前
尺素寸心发布了新的文献求助10
8秒前
刺猬完成签到,获得积分10
8秒前
9秒前
昭蘅发布了新的文献求助10
10秒前
10秒前
朴实曼岚发布了新的文献求助10
10秒前
ppf完成签到,获得积分20
10秒前
Tangshy发布了新的文献求助30
11秒前
XiaoDai完成签到,获得积分10
12秒前
mint完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
zhou_发布了新的文献求助10
13秒前
gfhdf完成签到,获得积分10
13秒前
现实的依凝完成签到,获得积分20
13秒前
隐形曼青应助chie采纳,获得10
14秒前
actor2006完成签到,获得积分10
14秒前
14秒前
15秒前
QX完成签到,获得积分10
15秒前
16秒前
xh完成签到 ,获得积分10
17秒前
17秒前
科目三应助actor2006采纳,获得10
18秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715