Assessment of DeepONet for time dependent reliability analysis of dynamical systems subjected to stochastic loading

水准点(测量) 可靠性(半导体) 计算机科学 替代模型 不确定度量化 功能(生物学) 非线性系统 操作员(生物学) 人工神经网络 动力系统理论 高斯过程 随机过程 高斯分布 数学优化 机器学习 人工智能 算法 数学 统计 地理 化学 功率(物理) 抑制因子 物理 基因 生物 转录因子 进化生物学 量子力学 生物化学 大地测量学
作者
Shailesh Garg,Harshit Gupta,Souvik Chakraborty
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:270: 114811-114811
标识
DOI:10.1016/j.engstruct.2022.114811
摘要

Time dependent reliability analysis and uncertainty quantification of structural system subjected to stochastic forcing function is a challenging endeavour as it necessitates considerable computational time. We investigate the efficacy of recently proposed DeepONet in solving time dependent reliability analysis and uncertainty quantification of systems subjected to stochastic loading. Unlike conventional machine learning and deep learning algorithms, DeepONet is an operator network and learns a function to function mapping and hence, is ideally suited to propagate the uncertainty from the stochastic forcing function to the output responses. We use DeepONet to build a surrogate model for the dynamical system under consideration. Multiple case studies, involving both toy and benchmark problems, have been conducted to examine the efficacy of DeepONet in time dependent reliability analysis and uncertainty quantification of linear and nonlinear dynamical systems. Comparisons have also been drawn with Recurrent Neural Network results and with results obtained from Proper Orthogonal Decomposition based Gaussian process. The results obtained indicate that the DeepONet architecture is accurate as well as efficient. Moreover, DeepONet posses zero shot learning capabilities and hence, a trained model easily generalizes to unseen and new environment with no further training. • We investigate DeepONet for time-dependent reliability analysis. • DeepOnet learns operator and allows zero shot learning. • DeepONet accurately captures probability of failure and PDF of FPFT. • DeepONet is highly efficient and yields accurate results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
理想发布了新的文献求助10
2秒前
派派发布了新的文献求助10
3秒前
3秒前
5秒前
大鱼应助Danboard采纳,获得10
6秒前
艺术大师发布了新的文献求助10
7秒前
务实的菓完成签到 ,获得积分10
7秒前
time完成签到,获得积分10
8秒前
xuanqing发布了新的文献求助10
8秒前
9秒前
10秒前
Ava应助理想采纳,获得10
11秒前
12秒前
uniqueycd完成签到,获得积分10
13秒前
13秒前
nenoaowu发布了新的文献求助10
14秒前
艺术大师完成签到,获得积分10
14秒前
xiaofu完成签到,获得积分10
15秒前
充电宝应助黄婵采纳,获得10
15秒前
16秒前
SciGPT应助Lenacici采纳,获得10
16秒前
17秒前
哈哈哈哈发布了新的文献求助10
17秒前
19秒前
Yeyuntian完成签到 ,获得积分10
19秒前
zhouyunan完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
cyan发布了新的文献求助10
23秒前
啦啦啦完成签到,获得积分10
23秒前
23秒前
老实向雁完成签到,获得积分10
23秒前
24秒前
樱花恋发布了新的文献求助10
25秒前
26秒前
U9A发布了新的文献求助10
27秒前
英姑应助慈祥的爆米花采纳,获得10
27秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993587
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265206
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712