重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Assessment of DeepONet for time dependent reliability analysis of dynamical systems subjected to stochastic loading

水准点(测量) 可靠性(半导体) 计算机科学 替代模型 不确定度量化 功能(生物学) 非线性系统 操作员(生物学) 人工神经网络 动力系统理论 高斯过程 随机过程 高斯分布 数学优化 机器学习 人工智能 算法 数学 统计 功率(物理) 生物化学 物理 化学 大地测量学 抑制因子 量子力学 进化生物学 转录因子 基因 生物 地理
作者
Shailesh Garg,Harshit Gupta,Souvik Chakraborty
出处
期刊:Engineering Structures [Elsevier]
卷期号:270: 114811-114811
标识
DOI:10.1016/j.engstruct.2022.114811
摘要

Time dependent reliability analysis and uncertainty quantification of structural system subjected to stochastic forcing function is a challenging endeavour as it necessitates considerable computational time. We investigate the efficacy of recently proposed DeepONet in solving time dependent reliability analysis and uncertainty quantification of systems subjected to stochastic loading. Unlike conventional machine learning and deep learning algorithms, DeepONet is an operator network and learns a function to function mapping and hence, is ideally suited to propagate the uncertainty from the stochastic forcing function to the output responses. We use DeepONet to build a surrogate model for the dynamical system under consideration. Multiple case studies, involving both toy and benchmark problems, have been conducted to examine the efficacy of DeepONet in time dependent reliability analysis and uncertainty quantification of linear and nonlinear dynamical systems. Comparisons have also been drawn with Recurrent Neural Network results and with results obtained from Proper Orthogonal Decomposition based Gaussian process. The results obtained indicate that the DeepONet architecture is accurate as well as efficient. Moreover, DeepONet posses zero shot learning capabilities and hence, a trained model easily generalizes to unseen and new environment with no further training. • We investigate DeepONet for time-dependent reliability analysis. • DeepOnet learns operator and allows zero shot learning. • DeepONet accurately captures probability of failure and PDF of FPFT. • DeepONet is highly efficient and yields accurate results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助fish采纳,获得10
2秒前
穆雨完成签到 ,获得积分10
3秒前
zhang完成签到,获得积分10
3秒前
lili完成签到,获得积分10
4秒前
彭于晏应助wwewew采纳,获得10
4秒前
陶醉怀梦完成签到 ,获得积分10
4秒前
水菜泽子完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
椰子饭发布了新的文献求助10
5秒前
霸气的小蚂蚁完成签到 ,获得积分10
6秒前
zcy发布了新的文献求助20
6秒前
7秒前
yan_wang发布了新的文献求助30
9秒前
椰子狗完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
WEE完成签到,获得积分20
11秒前
12秒前
墨羽完成签到,获得积分10
13秒前
WEE发布了新的文献求助10
14秒前
Nniu完成签到,获得积分10
15秒前
15秒前
rainyy发布了新的文献求助10
15秒前
小慧发布了新的文献求助10
16秒前
淡淡依白发布了新的文献求助10
16秒前
wwewew发布了新的文献求助10
16秒前
Ava应助Huguizhou采纳,获得10
16秒前
17秒前
YpH发布了新的文献求助10
17秒前
17秒前
小袁完成签到,获得积分10
18秒前
18秒前
火星上的忆枫关注了科研通微信公众号
18秒前
20秒前
独特的绮山完成签到,获得积分10
20秒前
大模型应助清秋采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739