Deep learning based research on quality classification of shiitake mushrooms

修剪 计算机科学 人工智能 过程(计算) 深度学习 模式识别(心理学) 学习迁移 机器学习 数据挖掘
作者
Liu Qiang,Ming Fang,Yusheng Li,Mingwang Gao
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier]
卷期号:168: 113902-113902
标识
DOI:10.1016/j.lwt.2022.113902
摘要

The classification and processing of shiitake mushrooms is inclined to a labor-intensive task, which needs to pick shiitake mushrooms of high quality by labor force for a long time. In this paper, a high-efficiency channel pruning mechanism is proposed to improve the YOLOX deep learning method that is the latest version of YOLO serials algorithm for identification and grading of mushroom quality. Firstly, the YOLOX model is built by transfer learning after the image data set was expanded. Secondly, the built model was optimized by channel pruning algorithm. Finally, the pruned model is further fine-tuned by knowledge distillation, and the image data set was used to train the YOLOX network model optimized by channel pruning. The experimental results indicate that the improved YOLOX method proposed in this paper can inspect the surface texture of shiitake mushrooms effectively that mAP and FSP are respectively 99.96% and 57.3856, and the model size was reduced by more than half. Compared with Faster R–CNN, YOLOv3, YOLOv4, SSD 300 and the original YOLOX, the improved method proposed in this paper owns better comprehensive performance that it can be effectively applied to the rapid quality classification for shiitake mushrooms in production process. • YOLOX that the latest version of YOLO serial algorithms is applied in the quality classification of shiitake mushrooms. • The channel pruning algorithm is introduced into the YOLOX model and greatly reduces the number of model parameters. • The insufficient dataset samples are expanded by data enhancement method effectively. • The distillation method is adopted in the process of fine-tuning of model for restoring accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cg发布了新的文献求助10
1秒前
1秒前
tangyandi完成签到,获得积分10
3秒前
风驻云停发布了新的文献求助30
3秒前
辛夷发布了新的文献求助10
3秒前
4秒前
Owen应助珏珏子采纳,获得10
4秒前
访云发布了新的文献求助10
4秒前
谷大强发布了新的文献求助10
5秒前
5秒前
6秒前
94line发布了新的文献求助10
7秒前
7秒前
zyy发布了新的文献求助10
7秒前
saikema发布了新的文献求助30
7秒前
juan123_wu发布了新的文献求助10
9秒前
微笑发布了新的文献求助10
9秒前
9秒前
斯文败类应助飘零的歌手采纳,获得10
9秒前
Booiys发布了新的文献求助30
9秒前
10秒前
赘婿应助杨琴采纳,获得10
12秒前
付绒完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
李小牙发布了新的文献求助10
14秒前
泽凡完成签到,获得积分10
15秒前
科研通AI2S应助jiao采纳,获得10
15秒前
星辰大海应助jiao采纳,获得10
15秒前
15秒前
15秒前
qiao完成签到,获得积分10
16秒前
16秒前
CipherSage应助小点点采纳,获得10
16秒前
jelly完成签到,获得积分10
16秒前
超级向珊完成签到,获得积分10
18秒前
18秒前
消消消消气完成签到 ,获得积分10
18秒前
胡萝北丁发布了新的文献求助10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313305
求助须知:如何正确求助?哪些是违规求助? 2945741
关于积分的说明 8526806
捐赠科研通 2621466
什么是DOI,文献DOI怎么找? 1433588
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650585