亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning based research on quality classification of shiitake mushrooms

修剪 计算机科学 人工智能 过程(计算) 深度学习 模式识别(心理学) 学习迁移 机器学习 数据挖掘
作者
Liu Qiang,Ming Fang,Yusheng Li,Mingwang Gao
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier BV]
卷期号:168: 113902-113902
标识
DOI:10.1016/j.lwt.2022.113902
摘要

The classification and processing of shiitake mushrooms is inclined to a labor-intensive task, which needs to pick shiitake mushrooms of high quality by labor force for a long time. In this paper, a high-efficiency channel pruning mechanism is proposed to improve the YOLOX deep learning method that is the latest version of YOLO serials algorithm for identification and grading of mushroom quality. Firstly, the YOLOX model is built by transfer learning after the image data set was expanded. Secondly, the built model was optimized by channel pruning algorithm. Finally, the pruned model is further fine-tuned by knowledge distillation, and the image data set was used to train the YOLOX network model optimized by channel pruning. The experimental results indicate that the improved YOLOX method proposed in this paper can inspect the surface texture of shiitake mushrooms effectively that mAP and FSP are respectively 99.96% and 57.3856, and the model size was reduced by more than half. Compared with Faster R–CNN, YOLOv3, YOLOv4, SSD 300 and the original YOLOX, the improved method proposed in this paper owns better comprehensive performance that it can be effectively applied to the rapid quality classification for shiitake mushrooms in production process. • YOLOX that the latest version of YOLO serial algorithms is applied in the quality classification of shiitake mushrooms. • The channel pruning algorithm is introduced into the YOLOX model and greatly reduces the number of model parameters. • The insufficient dataset samples are expanded by data enhancement method effectively. • The distillation method is adopted in the process of fine-tuning of model for restoring accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助皮崇知采纳,获得10
3秒前
Q123ba叭完成签到,获得积分10
3秒前
傲娇书萱发布了新的文献求助10
5秒前
5秒前
12秒前
皮崇知发布了新的文献求助10
15秒前
16秒前
完美世界应助向东东采纳,获得10
20秒前
xona完成签到,获得积分10
25秒前
善学以致用应助落后凝莲采纳,获得10
27秒前
符聪完成签到 ,获得积分10
32秒前
Luchy完成签到 ,获得积分10
36秒前
41秒前
46秒前
糖糖唐完成签到,获得积分10
47秒前
ads完成签到,获得积分20
54秒前
水水发布了新的文献求助10
1分钟前
1分钟前
hp571完成签到,获得积分10
1分钟前
科研通AI5应助薛人英采纳,获得10
1分钟前
hp571发布了新的文献求助10
1分钟前
江月年发布了新的文献求助10
1分钟前
剑影完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ftl完成签到 ,获得积分10
1分钟前
1分钟前
kw98完成签到 ,获得积分10
1分钟前
水水完成签到,获得积分10
1分钟前
QiongYin_123完成签到 ,获得积分10
1分钟前
和谐凌雪发布了新的文献求助10
1分钟前
1分钟前
1分钟前
pentjy完成签到,获得积分10
1分钟前
Focus发布了新的文献求助10
1分钟前
勤恳的不悔完成签到,获得积分10
1分钟前
1分钟前
cat发布了新的文献求助50
1分钟前
酷波er应助pentjy采纳,获得10
1分钟前
1分钟前
优秀藏鸟完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176