Cascaded Deep Convolutional Neural Networks as Improved Methods of Preprocessing Raman Spectroscopy Data

拉曼光谱 预处理器 人工智能 卷积神经网络 模式识别(心理学) 深度学习 表面增强拉曼光谱 化学 主成分分析 数据预处理 计算机科学 光谱学 生物系统 拉曼散射 光学 物理 量子力学 生物
作者
Mohammadrahim Kazemzadeh,Miguel Martínez-Calderón,Wei Xu,Lawrence W. Chamley,Colin L. Hisey,Neil G. R. Broderick
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (37): 12907-12918 被引量:44
标识
DOI:10.1021/acs.analchem.2c03082
摘要

Machine learning has had a significant impact on the value of spectroscopic characterization tools, particularly in biomedical applications, due to its ability to detect latent patterns within complex spectral data. However, it often requires extensive data preprocessing, including baseline correction and denoising, which can lead to an unintentional bias during classification. To address this, we developed two deep learning methods capable of fully preprocessing raw Raman spectroscopy data without any human input. First, cascaded deep convolutional neural networks (CNN) based on either ResNet or U-Net architectures were trained on randomly generated spectra with augmented defects. Then, they were tested using simulated Raman spectra, surface-enhanced Raman spectroscopy (SERS) imaging of chemical species, low resolution Raman spectra of human bladder cancer tissue, and finally, classification of SERS spectra from human placental extracellular vesicles (EVs). Both approaches resulted in faster training and complete spectral preprocessing in a single step, with more speed, defect tolerance, and classification accuracy compared to conventional methods. These findings indicate that cascaded CNN preprocessing is ideal for biomedical Raman spectroscopy applications in which large numbers of heterogeneous spectra with diverse defects need to be automatically, rapidly, and reproducibly preprocessed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanfan44390发布了新的文献求助10
1秒前
CCH完成签到,获得积分10
1秒前
着急的书白完成签到,获得积分20
2秒前
tracy10完成签到,获得积分10
2秒前
zzj完成签到,获得积分10
2秒前
2秒前
敬鱼完成签到,获得积分10
3秒前
风风发布了新的文献求助10
3秒前
科目三应助00采纳,获得10
3秒前
可爱的函函应助liulangnmg采纳,获得20
4秒前
科研通AI6应助咖啡豆采纳,获得50
4秒前
老干部发布了新的文献求助10
4秒前
4秒前
敬鱼发布了新的文献求助10
6秒前
雾里完成签到,获得积分10
6秒前
CCH发布了新的文献求助10
6秒前
7秒前
李健应助王灿章采纳,获得10
7秒前
科研通AI5应助月亮采纳,获得10
7秒前
小王小王发布了新的文献求助10
8秒前
啵赞的龟丝儿完成签到,获得积分10
8秒前
fanfan44390完成签到,获得积分10
8秒前
共享精神应助坚定的寒松采纳,获得10
8秒前
害羞文博发布了新的文献求助10
9秒前
ermu应助felix采纳,获得10
10秒前
毛毛弟发布了新的文献求助10
10秒前
曾无忧应助felix采纳,获得10
10秒前
wjx发布了新的文献求助10
11秒前
11秒前
激动的跳跳糖完成签到 ,获得积分10
12秒前
12秒前
ZeKaWa应助HY采纳,获得10
13秒前
14秒前
xxy发布了新的文献求助30
14秒前
14秒前
Tiramisu628发布了新的文献求助10
15秒前
李健应助小娅娅采纳,获得10
15秒前
冯123发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874