Cascaded Deep Convolutional Neural Networks as Improved Methods of Preprocessing Raman Spectroscopy Data

拉曼光谱 预处理器 人工智能 卷积神经网络 模式识别(心理学) 深度学习 表面增强拉曼光谱 化学 主成分分析 数据预处理 计算机科学 光谱学 生物系统 拉曼散射 光学 物理 量子力学 生物
作者
Mohammadrahim Kazemzadeh,Miguel Martínez-Calderón,Wei Xu,Lawrence W. Chamley,Colin L. Hisey,Neil G. R. Broderick
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (37): 12907-12918 被引量:31
标识
DOI:10.1021/acs.analchem.2c03082
摘要

Machine learning has had a significant impact on the value of spectroscopic characterization tools, particularly in biomedical applications, due to its ability to detect latent patterns within complex spectral data. However, it often requires extensive data preprocessing, including baseline correction and denoising, which can lead to an unintentional bias during classification. To address this, we developed two deep learning methods capable of fully preprocessing raw Raman spectroscopy data without any human input. First, cascaded deep convolutional neural networks (CNN) based on either ResNet or U-Net architectures were trained on randomly generated spectra with augmented defects. Then, they were tested using simulated Raman spectra, surface-enhanced Raman spectroscopy (SERS) imaging of chemical species, low resolution Raman spectra of human bladder cancer tissue, and finally, classification of SERS spectra from human placental extracellular vesicles (EVs). Both approaches resulted in faster training and complete spectral preprocessing in a single step, with more speed, defect tolerance, and classification accuracy compared to conventional methods. These findings indicate that cascaded CNN preprocessing is ideal for biomedical Raman spectroscopy applications in which large numbers of heterogeneous spectra with diverse defects need to be automatically, rapidly, and reproducibly preprocessed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英俊的铭应助ccccccp采纳,获得10
1秒前
1秒前
年年完成签到,获得积分10
1秒前
innocent完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Zhanghh87完成签到,获得积分10
2秒前
yaochuan完成签到,获得积分10
3秒前
4秒前
Ava应助qq16采纳,获得20
4秒前
西瓜ovo完成签到,获得积分10
4秒前
ninicwang完成签到,获得积分10
5秒前
明小丽发布了新的文献求助20
5秒前
火龙果发布了新的文献求助10
6秒前
7秒前
小雯完成签到 ,获得积分10
7秒前
芝士发布了新的文献求助10
7秒前
7秒前
勤奋幻柏发布了新的文献求助10
7秒前
8秒前
panjunlu发布了新的文献求助10
9秒前
9秒前
9秒前
华仔应助lixm采纳,获得10
9秒前
9秒前
冷酷严青发布了新的文献求助10
10秒前
闪闪的从彤完成签到,获得积分10
10秒前
10秒前
迅速海云完成签到,获得积分10
10秒前
顾矜应助万嘉俊采纳,获得10
11秒前
默默若枫完成签到,获得积分10
11秒前
在水一方应助小李胖采纳,获得10
11秒前
原鑫完成签到,获得积分10
11秒前
11秒前
Jasper应助Ryan采纳,获得10
12秒前
彭于彦祖应助踹脸大妈采纳,获得30
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600