IMar

计算机科学 动作(物理) 分解 人工智能 人机交互 模式识别(心理学) 数据挖掘 生态学 量子力学 生物 物理
作者
Jing He,Wei Yang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:6 (3): 1-27 被引量:5
标识
DOI:10.1145/3550311
摘要

Currently, WiFi-based user continuous action counting and recognition is limited to a single person. Being able to continuously analyze and record the different actions of multiple users in a device-free scene is one of the most challenging job to date. In this paper, we present a new WiFi-based multi-user action recognition system, called IMar, which can achieve decomposition of multi-user action information and retain action features as much as possible, i.e., simultaneously recognize and count the continuous and different actions of multiple people. Our main technical route is to design a Dynamic Propagation Delay Threshold Sanitization (DPDTS) algorithm to retain the path information that only passes through the target user body, in order to reduce the multipath effect and make the data as pure as possible, and then model the amplitude relationship of the multi-person action scene. After acquiring the individual data according to the model and tensor decomposition, we propose a Multiplayer Action Amplitude Decomposition and Completion (MAADC) algorithm to obtain more informative data for individual continuous action. Moreover, the single-person data of subcarrier-level obtained by tensor decomposition is extended to the data of stream-level, which brings great convenience to the single-person action recognition. Experimental results show that IMar can work with up to 6 people. The average recognition accuracy and counting accuracy are 78% and 91% respectively in the experimental group of continuous and natural actions by multiple users, and the average recognition accuracy of the experiments in all cases is 83.7%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘欣怡完成签到,获得积分10
1秒前
1秒前
2秒前
超级冥幽完成签到 ,获得积分10
2秒前
汉堡包应助蓝桉采纳,获得10
2秒前
咕噜仔完成签到,获得积分10
2秒前
3秒前
yulia完成签到 ,获得积分10
3秒前
冷酷的松思完成签到,获得积分10
3秒前
吴许越成完成签到,获得积分10
3秒前
释然zc完成签到,获得积分10
4秒前
布吉岛呀完成签到 ,获得积分10
4秒前
周浩完成签到 ,获得积分10
4秒前
老人与狗完成签到,获得积分10
5秒前
zzz完成签到,获得积分10
6秒前
怡崽完成签到,获得积分20
6秒前
zh123完成签到,获得积分10
7秒前
8秒前
蔺一江发布了新的文献求助10
8秒前
Ormand发布了新的文献求助30
9秒前
zhao完成签到,获得积分10
9秒前
传奇3应助释然zc采纳,获得100
9秒前
布同完成签到,获得积分10
9秒前
奥丁蒂法完成签到,获得积分10
10秒前
Lee完成签到,获得积分10
10秒前
Ssyong完成签到 ,获得积分10
10秒前
11秒前
zyb完成签到 ,获得积分10
12秒前
13秒前
无心的闭月完成签到,获得积分10
13秒前
kkkkkkk发布了新的文献求助10
13秒前
Joshua发布了新的文献求助10
13秒前
14秒前
午餐肉完成签到,获得积分10
14秒前
完美世界应助Ashley采纳,获得10
15秒前
15秒前
ryan发布了新的文献求助10
16秒前
蚂虾发布了新的文献求助10
16秒前
17秒前
lh完成签到,获得积分10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773842
求助须知:如何正确求助?哪些是违规求助? 3319455
关于积分的说明 10195161
捐赠科研通 3034050
什么是DOI,文献DOI怎么找? 1664925
邀请新用户注册赠送积分活动 796399
科研通“疑难数据库(出版商)”最低求助积分说明 757443