Quantum Generative Adversarial Network and Quantum Neural Network for Image Classification

MNIST数据库 计算机科学 人工神经网络 核(代数) 特征(语言学) 人工智能 上下文图像分类 图像(数学) 深度学习 模式识别(心理学) 机器学习 数学 语言学 哲学 组合数学
作者
Arun Pandian J,K. Kanchanadevi,Vadem Chandu Mohan,Pulibandla Hari Krishna,Edagottu Govardhan
标识
DOI:10.1109/icscds53736.2022.9760943
摘要

In this paper, a Quantum Neural Network (QNN) has been proposed using the Projected Quantum Kernel feature for an image classification task. The QCNN consists of four dense layers; the first layer collects the quantum data as an input and the fourth layer produced the classification output. Moreover, a Quantum Generative Advisory Network (QGAN) has been developed using the patching technique for enhancing the number of samples in the image dataset. The proposed QNN and QGAN are constructed using quantum filters. The MNIST handwritten digit dataset was used to train and test the QNN model performance on image classification. A binary classification dataset was created from the MNIST handwritten digit database using digits 0 and 6. The QGAN generated 221 samples on digits 0 and 6 classes. The generated samples were added to the training dataset for the QNN model. The size of the Filtered MNIST handwritten dataset was extended from 13779 to 14000 samples. There are 12,000 images are split for training and 2,000 images for testing. The principal component analysis technique was used to reduce the dimension of the data. The QNN was trained on the enhanced dataset using a GPU environment. The testing accuracy of the QNN model was 98.65 percent; it is superior to the traditional neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tramp应助科研通管家采纳,获得20
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
Theprisoners应助科研通管家采纳,获得30
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得20
1秒前
Liufgui应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
花花应助科研通管家采纳,获得10
1秒前
Liufgui应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
顾矜应助闪闪的绮波采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
哈哈哈发布了新的文献求助10
2秒前
2秒前
彪行天下发布了新的文献求助10
2秒前
桐桐应助烂漫的汲采纳,获得10
4秒前
王天一完成签到,获得积分10
4秒前
大力的契完成签到,获得积分10
5秒前
6秒前
7秒前
香蕉觅云应助zhao采纳,获得10
9秒前
乔孟婷发布了新的文献求助20
9秒前
苹果蜗牛完成签到 ,获得积分10
9秒前
10秒前
酷波er应助你吼采纳,获得10
11秒前
可爱的函函应助启震采纳,获得10
11秒前
11秒前
12秒前
33333发布了新的文献求助10
12秒前
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070