Forest total and component biomass retrieval via GA-SVR algorithm and quad-polarimetric SAR data

遥感 均方误差 标准差 旋光法 合成孔径雷达 地理 数学 随机森林 算法 计算机科学 统计 人工智能 物理 散射 光学
作者
Jianmin Shi,Wangfei Zhang,Armando Marino,Peng Zeng,Yongjie Ji,Han Zhao,Guoran Huang,Mengjin Wang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:118: 103275-103275 被引量:9
标识
DOI:10.1016/j.jag.2023.103275
摘要

A reliable evaluation of biomass is a vital prerequisite for realizing the international goal of "emission peak and carbon neutrality". It is critical to estimate the components of forest biomass, for ecosystem management. Additionally, working on components we may solve the saturation problems in AGB estimation using remote sensing features. In our previous works we proposed GA-SVR (Genetic algorithms and support vector regression) algorithm with polarimetric SAR (Synthetic Aperture Rader) to retrieve total forest Above Ground Biomass (AGB) estimation in our previous works, however, the potential of GA-SVR algorithm applied in component AGB estimation especially using combination of multi-frequency polarimetric SAR features deserves further exploration. In this study, we use quad-polarimetric SAR data at C- and L- bands, extracting the backscatter coefficients and polarimetric features derived from four polarization decomposition methods (Yamaguchi 3-component decomposition, Freeman 2-component decomposition, H/A/alpha decomposition, and TSVM decomposition) as the input to the GA-SVR for forest component AGB estimation. The effectiveness of 66 polarimetric features derived from C-, L-band at each test site was evaluated for forest component AGB prediction at two test sites. The outcomes demonstrated that the GA-SVR attained high estimation accuracy according to the values of coefficient of determination R2, root mean square error, relative root mean square error, mean deviation, mean absolute deviation, mean percentage error, and mean absolute percentage error. The highest attained values of them were 0.77, 1.01 Mg/ha, 23.02%, −0.07 Mg/ha, 0.71 Mg/ha, 0.15%, and 18.42%, respectively. The study reconfirmed the robustness of GA-SVR algorithm and effectiveness of polarimetric SAR features extracted from four decomposition methods for forest total and AGB estimation. It also revealed that the capability of combining C- band L-band SAR polarimetric features for improving forest total and component AGB relies on the difference of forest structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨丶完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
迷了路的猫完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
故意的烨磊完成签到,获得积分10
4秒前
逍遥游发布了新的文献求助10
4秒前
l_zishuo发布了新的文献求助10
4秒前
5秒前
勤劳的代容完成签到 ,获得积分20
5秒前
6秒前
6秒前
爆米花应助优美紫槐采纳,获得10
6秒前
declan发布了新的文献求助10
6秒前
babaking发布了新的文献求助10
6秒前
xpy0227发布了新的文献求助10
7秒前
JamesPei应助李哈哈采纳,获得10
7秒前
7秒前
bkagyin应助热情小白菜采纳,获得10
7秒前
7秒前
共享精神应助sam采纳,获得30
8秒前
sin完成签到,获得积分10
8秒前
8秒前
8秒前
Jun完成签到 ,获得积分10
8秒前
GingerF应助故意的烨磊采纳,获得100
9秒前
外向访卉完成签到,获得积分10
9秒前
Angora发布了新的文献求助10
9秒前
SciGPT应助sgz666采纳,获得10
9秒前
zs完成签到 ,获得积分10
9秒前
kkk完成签到,获得积分10
10秒前
慕容誉发布了新的文献求助30
10秒前
出光吧发布了新的文献求助10
10秒前
万能图书馆应助sin采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712345
求助须知:如何正确求助?哪些是违规求助? 5209385
关于积分的说明 15267184
捐赠科研通 4864321
什么是DOI,文献DOI怎么找? 2611345
邀请新用户注册赠送积分活动 1561615
关于科研通互助平台的介绍 1518892