Forest total and component biomass retrieval via GA-SVR algorithm and quad-polarimetric SAR data

遥感 均方误差 标准差 旋光法 合成孔径雷达 地理 数学 随机森林 算法 计算机科学 统计 人工智能 物理 散射 光学
作者
Jianmin Shi,Wangfei Zhang,Armando Marino,Peng Zeng,Yongjie Ji,Han Zhao,Guoran Huang,Mengjin Wang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:118: 103275-103275 被引量:9
标识
DOI:10.1016/j.jag.2023.103275
摘要

A reliable evaluation of biomass is a vital prerequisite for realizing the international goal of "emission peak and carbon neutrality". It is critical to estimate the components of forest biomass, for ecosystem management. Additionally, working on components we may solve the saturation problems in AGB estimation using remote sensing features. In our previous works we proposed GA-SVR (Genetic algorithms and support vector regression) algorithm with polarimetric SAR (Synthetic Aperture Rader) to retrieve total forest Above Ground Biomass (AGB) estimation in our previous works, however, the potential of GA-SVR algorithm applied in component AGB estimation especially using combination of multi-frequency polarimetric SAR features deserves further exploration. In this study, we use quad-polarimetric SAR data at C- and L- bands, extracting the backscatter coefficients and polarimetric features derived from four polarization decomposition methods (Yamaguchi 3-component decomposition, Freeman 2-component decomposition, H/A/alpha decomposition, and TSVM decomposition) as the input to the GA-SVR for forest component AGB estimation. The effectiveness of 66 polarimetric features derived from C-, L-band at each test site was evaluated for forest component AGB prediction at two test sites. The outcomes demonstrated that the GA-SVR attained high estimation accuracy according to the values of coefficient of determination R2, root mean square error, relative root mean square error, mean deviation, mean absolute deviation, mean percentage error, and mean absolute percentage error. The highest attained values of them were 0.77, 1.01 Mg/ha, 23.02%, −0.07 Mg/ha, 0.71 Mg/ha, 0.15%, and 18.42%, respectively. The study reconfirmed the robustness of GA-SVR algorithm and effectiveness of polarimetric SAR features extracted from four decomposition methods for forest total and AGB estimation. It also revealed that the capability of combining C- band L-band SAR polarimetric features for improving forest total and component AGB relies on the difference of forest structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Alces采纳,获得10
1秒前
务实大雁完成签到,获得积分10
1秒前
1秒前
帅气小刺猬完成签到,获得积分10
1秒前
YE发布了新的文献求助10
2秒前
汤柏钧完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
yznfly应助kento采纳,获得50
4秒前
学术糕手完成签到,获得积分10
4秒前
苏梗完成签到 ,获得积分10
5秒前
5秒前
5秒前
1394980266完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
ee发布了新的文献求助10
6秒前
李健应助英俊小鼠采纳,获得10
6秒前
Eig发布了新的文献求助200
7秒前
CipherSage应助包容笑蓝采纳,获得10
8秒前
徐凤年完成签到,获得积分20
8秒前
兜有米完成签到,获得积分10
9秒前
Syx_rcees发布了新的文献求助10
10秒前
10秒前
hug沅沅发布了新的文献求助10
10秒前
不喜发布了新的文献求助10
11秒前
11秒前
孤独的ming发布了新的文献求助10
11秒前
12秒前
蓝天发布了新的文献求助10
12秒前
兰天发布了新的文献求助30
12秒前
12秒前
深情的秋白完成签到 ,获得积分10
13秒前
wanwusheng完成签到,获得积分10
13秒前
英俊的铭应助Syx_rcees采纳,获得10
15秒前
欢喜小霸王完成签到,获得积分10
16秒前
iuhgnor完成签到,获得积分10
16秒前
CipherSage应助su采纳,获得10
16秒前
结实凌瑶发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798