分级(工程)
磁共振成像
弯月面
医学
计算机科学
人工智能
放射科
工程类
土木工程
入射(几何)
物理
光学
作者
Anlin Luo,Shuiping Gou,Nuo Tong,Bo Liu,Licheng Jiao,Hu Xu,Y.G. Wang,Tan Ding
标识
DOI:10.1038/s41746-024-01082-z
摘要
Abstract Meniscal injury represents a common type of knee injury, accounting for over 50% of all knee injuries. The clinical diagnosis and treatment of meniscal injury heavily rely on magnetic resonance imaging (MRI). However, accurately diagnosing the meniscus from a comprehensive knee MRI is challenging due to its limited and weak signal, significantly impeding the precise grading of meniscal injuries. In this study, a visual interpretable fine grading (VIFG) diagnosis model has been developed to facilitate intelligent and quantified grading of meniscal injuries. Leveraging a multilevel transfer learning framework, it extracts comprehensive features and incorporates an attributional attention module to precisely locate the injured positions. Moreover, the attention-enhancing feedback module effectively concentrates on and distinguishes regions with similar grades of injury. The proposed method underwent validation on FastMRI_Knee and Xijing_Knee dataset, achieving mean grading accuracies of 0.8631 and 0.8502, surpassing the state-of-the-art grading methods notably in error-prone Grade 1 and Grade 2 cases. Additionally, the visually interpretable heatmaps generated by VIFG provide accurate depictions of actual or potential meniscus injury areas beyond human visual capability. Building upon this, a novel fine grading criterion was introduced for subtypes of meniscal injury, further classifying Grade 2 into 2a, 2b, and 2c, aligning with the anatomical knowledge of meniscal blood supply. It can provide enhanced injury-specific details, facilitating the development of more precise surgical strategies. The efficacy of this subtype classification was evidenced in 20 arthroscopic cases, underscoring the potential enhancement brought by intelligent-assisted diagnosis and treatment for meniscal injuries.
科研通智能强力驱动
Strongly Powered by AbleSci AI