Channel Selection for Stereo- Electroencephalography (SEEG)-Based Invasive Brain-Computer Interfaces Using Deep Learning Methods

立体脑电图 脑电图 人工智能 频道(广播) 计算机科学 选择(遗传算法) 计算机视觉 模式识别(心理学) 神经科学 心理学 癫痫外科 计算机网络
作者
Xiaolong Wu,Guangye Li,Xin Gao,Benjamin Metcalfe,Dingguo Zhang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 800-811 被引量:1
标识
DOI:10.1109/tnsre.2024.3364752
摘要

Brain-computer interfaces (BCIs) can enable direct communication with assistive devices by recording and decoding signals from the brain. To achieve high performance, many electrodes will be used, such as the recently developed invasive BCIs with channel numbers up to hundreds or even thousands. For those high-throughput BCIs, channel selection is important to reduce signal redundancy and invasiveness while maintaining decoding performance. However, such endeavour is rarely reported for invasive BCIs, especially those using deep learning methods. Two deep learning-based methods, referred to as Gumbel and STG, were proposed in this paper. They were evaluated using the Stereo-electroencephalography (SEEG) signals, and compared with three other methods, including manual selection, mutual information-based method (MI), and all channels (all channels without selection). The task is to classify the SEEG signals into five movements using channels selected by each method. When 10 channels were selected, the mean classification accuracies using Gumbel, STG (referred to as STG-10), manual selection, and MI selection were 65%, 60%, 60%, and 47%, respectively, whilst the accuracy was 59% using all channels (no selection). In addition, an investigation of the selected channels showed that Gumbel and STG have successfully identified the pre-central and post-central areas, which are closely related to motor control. Both Gumbel and STG successfully selected the informative channels in SEEG recordings while maintaining decoding accuracy. This study enables future high-throughput BCIs using deep learning methods, to identify useful channels and reduce computing and wireless transmission pressure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助杨桃采纳,获得10
刚刚
qw1发布了新的文献求助10
1秒前
九月完成签到,获得积分10
1秒前
xiongxianmei发布了新的文献求助10
1秒前
Aeson完成签到,获得积分20
2秒前
2秒前
迷路的文涛完成签到,获得积分10
2秒前
闾丘惜萱发布了新的文献求助10
3秒前
向日葵完成签到,获得积分10
5秒前
Ywffffff发布了新的文献求助10
5秒前
5秒前
Aeson发布了新的文献求助10
6秒前
liuliu完成签到,获得积分10
7秒前
LL完成签到,获得积分20
8秒前
8秒前
LL发布了新的文献求助10
10秒前
勤奋的如松完成签到,获得积分10
11秒前
小肆完成签到 ,获得积分10
11秒前
会飞的小猪完成签到,获得积分0
12秒前
共享精神应助略略略采纳,获得10
13秒前
科研通AI5应助小黄采纳,获得10
14秒前
vlots应助kingwill采纳,获得30
17秒前
丘比特应助Gilbert采纳,获得30
18秒前
19秒前
19秒前
研友_LBKR9n发布了新的文献求助10
22秒前
筱筱发布了新的文献求助20
23秒前
xiongxianmei发布了新的文献求助10
23秒前
紧张的天与完成签到,获得积分10
23秒前
24秒前
吖吖发布了新的文献求助20
24秒前
852应助carbon-dots采纳,获得10
24秒前
栀晴完成签到 ,获得积分10
25秒前
甜甜圈完成签到 ,获得积分10
27秒前
略略略发布了新的文献求助10
28秒前
科研通AI5应助简单从丹采纳,获得10
28秒前
30秒前
xiongxianmei完成签到,获得积分10
31秒前
31秒前
永远发布了新的文献求助10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901