A new grey adaptive integrated model for forecasting renewable electricity production

过度拟合 计算机科学 波动性(金融) 特征选择 可再生能源 计量经济学 数学优化 人工智能 数据挖掘 经济 人工神经网络 数学 电气工程 工程类
作者
Haolei Gu,Yan Chen,Lifeng Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:251: 123978-123978
标识
DOI:10.1016/j.eswa.2024.123978
摘要

Fossil fuel consumption is a major source of greenhouse gas emissions. The Russia–Ukraine conflict has led to energy price volatility. Therefore, affordable energy poses a significant threat. The development of renewable energy to meet consumption demands has attracted researchers' attention in worldwide. In this study, a novel grey adaptive integrated model is proposed to balance the fitting and generalization abilities for renewable energy generation trends. First, feature selection was performed using the mutual information filter method for influencing factors and the wrapper method. Second, FGM(1,1) was used to mine the data features, and AGMC(1,n) was used to extract multivariate time-series relationships. Finally, an adaptive integrated model with a Gaussian kernel function was proposed in order to assign weights. It balances the results of the two forecasting models to avoid the underfitting/overfitting problem generated by excessive data volatility and the abrupt shift of the influencing factors. The study results have shown that the proposed integrated model solved the underfitting and overfitting problems to a certain degree. Its performance is better than single model. We analyze the forecasting results and propose corresponding suggestions for the government and enterprises separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiaoj2006完成签到,获得积分10
刚刚
刚刚
斯文败类应助森气采纳,获得10
刚刚
SAIL完成签到,获得积分10
刚刚
1秒前
栾小鱼完成签到,获得积分10
1秒前
程瀚砚完成签到,获得积分10
1秒前
2秒前
2秒前
双人鱼life完成签到 ,获得积分10
2秒前
大大怪发布了新的文献求助10
2秒前
2秒前
3秒前
熊猫小宇发布了新的文献求助10
3秒前
fangfang发布了新的文献求助10
4秒前
Orange应助凌代萱采纳,获得30
5秒前
KZ发布了新的文献求助10
5秒前
JamesPei应助wenbwenbo采纳,获得30
5秒前
5秒前
烤乳朱发布了新的文献求助10
5秒前
6秒前
ziyueqin发布了新的文献求助30
6秒前
6秒前
一念之间发布了新的文献求助10
7秒前
7秒前
Hello应助冀赐采纳,获得10
7秒前
彼岸花发布了新的文献求助10
7秒前
8秒前
8秒前
mumu发布了新的文献求助10
9秒前
9秒前
不配.应助ll采纳,获得10
10秒前
10秒前
FashionBoy应助禾a采纳,获得10
11秒前
Passion发布了新的文献求助10
11秒前
zzz完成签到,获得积分10
11秒前
Revision发布了新的文献求助10
11秒前
森气发布了新的文献求助10
11秒前
sun完成签到,获得积分10
12秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153124
求助须知:如何正确求助?哪些是违规求助? 2804292
关于积分的说明 7858509
捐赠科研通 2462085
什么是DOI,文献DOI怎么找? 1310659
科研通“疑难数据库(出版商)”最低求助积分说明 629321
版权声明 601794