A new grey adaptive integrated model for forecasting renewable electricity production

过度拟合 计算机科学 波动性(金融) 特征选择 可再生能源 计量经济学 数学优化 人工智能 数据挖掘 经济 人工神经网络 数学 电气工程 工程类
作者
Haolei Gu,Yan Chen,Lifeng Wu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:251: 123978-123978
标识
DOI:10.1016/j.eswa.2024.123978
摘要

Fossil fuel consumption is a major source of greenhouse gas emissions. The Russia–Ukraine conflict has led to energy price volatility. Therefore, affordable energy poses a significant threat. The development of renewable energy to meet consumption demands has attracted researchers' attention in worldwide. In this study, a novel grey adaptive integrated model is proposed to balance the fitting and generalization abilities for renewable energy generation trends. First, feature selection was performed using the mutual information filter method for influencing factors and the wrapper method. Second, FGM(1,1) was used to mine the data features, and AGMC(1,n) was used to extract multivariate time-series relationships. Finally, an adaptive integrated model with a Gaussian kernel function was proposed in order to assign weights. It balances the results of the two forecasting models to avoid the underfitting/overfitting problem generated by excessive data volatility and the abrupt shift of the influencing factors. The study results have shown that the proposed integrated model solved the underfitting and overfitting problems to a certain degree. Its performance is better than single model. We analyze the forecasting results and propose corresponding suggestions for the government and enterprises separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叮叮叮铛完成签到,获得积分10
1秒前
Jasper应助基拉采纳,获得10
4秒前
5秒前
Alan发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
不语完成签到,获得积分10
7秒前
wlscj举报lq求助涉嫌违规
7秒前
changping应助木子雨采纳,获得10
8秒前
贾明灵发布了新的文献求助10
8秒前
8秒前
科研通AI6应助和谐的芷文采纳,获得10
8秒前
blingcmeng发布了新的文献求助10
10秒前
不爱吃魔芋完成签到,获得积分10
10秒前
科研通AI5应助anton采纳,获得10
11秒前
zsy完成签到,获得积分10
11秒前
anhao发布了新的文献求助10
12秒前
12秒前
科研通AI5应助花酒采纳,获得10
12秒前
Chimmy发布了新的文献求助10
13秒前
hibeauty完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
caihong应助柳如烟采纳,获得10
16秒前
xx发布了新的文献求助10
17秒前
17秒前
文献狗完成签到,获得积分10
18秒前
领导范儿应助Chimmy采纳,获得10
18秒前
小只驳回了英姑应助
19秒前
20秒前
小羽毛k发布了新的文献求助10
20秒前
20秒前
小土豆发布了新的文献求助10
20秒前
21秒前
22秒前
丘比特应助weirdo采纳,获得10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834