Breaking Barriers in Behavioral Change: The Potential of AI-Driven Motivational Interviewing

动机式访谈 医学 青光眼 子专业 对话 面试 杠杆(统计) 干预(咨询) 家庭医学 人工智能 护理部 心理学 计算机科学 眼科 沟通 政治学 法学
作者
Areeba Abid,Sally L. Baxter
出处
期刊:Journal of Glaucoma [Lippincott Williams & Wilkins]
卷期号:33 (7): 473-477
标识
DOI:10.1097/ijg.0000000000002382
摘要

Patient outcomes in ophthalmology are greatly influenced by adherence and patient participation, which can be particularly challenging in diseases like glaucoma, where medication regimens can be complex. A well-studied and evidence-based intervention for behavioral change is motivational interviewing (MI), a collaborative and patient-centered counseling approach that has been shown to improve medication adherence in glaucoma patients. However, there are many barriers to clinicians being able to provide motivational interviewing in-office, including short visit durations within high-volume ophthalmology clinics and inadequate billing structures for counseling. Recently, Large Language Models (LLMs), a type of artificial intelligence, have advanced such that they can follow instructions and carry coherent conversations, offering novel solutions to a wide range of clinical problems. In this paper, we discuss the potential of LLMs to provide chatbot-driven MI to improve adherence in glaucoma patients and provide an example conversation as a proof of concept. We discuss the advantages of AI-driven MI, such as demonstrated effectiveness, scalability, and accessibility. We also explore the risks and limitations, including issues of safety and privacy, as well as the factual inaccuracies and hallucinations to which LLMs are susceptible. Domain-specific training may be needed to ensure the accuracy and completeness of information provided in subspecialty areas such as glaucoma. Despite the current limitations, AI-driven motivational interviewing has the potential to offer significant improvements in adherence and should be further explored to maximally leverage the potential of artificial intelligence for our patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
互助棍哥完成签到,获得积分10
1秒前
敏感的楷瑞完成签到,获得积分10
1秒前
乔杰发布了新的文献求助10
2秒前
哈哈哈哈完成签到,获得积分10
2秒前
2秒前
CHANG完成签到 ,获得积分10
2秒前
jiajia发布了新的文献求助10
3秒前
guoguo完成签到,获得积分10
3秒前
学术小白完成签到,获得积分10
3秒前
tangsenlin完成签到,获得积分10
3秒前
xiaohuhuan完成签到,获得积分10
3秒前
李哈哈完成签到,获得积分10
3秒前
applooc完成签到,获得积分10
3秒前
4秒前
可可发布了新的文献求助10
4秒前
独特成威完成签到 ,获得积分10
4秒前
科研通AI2S应助郭思凡采纳,获得10
4秒前
wqy发布了新的文献求助10
4秒前
我是老大应助在郑州采纳,获得10
4秒前
吴吴发布了新的文献求助10
5秒前
5秒前
开放夏旋完成签到,获得积分10
5秒前
5秒前
科研小白完成签到,获得积分10
5秒前
lili完成签到,获得积分10
5秒前
辣辣辣完成签到,获得积分10
5秒前
6秒前
金铭完成签到,获得积分10
6秒前
zoe完成签到,获得积分10
7秒前
aabb完成签到,获得积分10
7秒前
温婉的花生完成签到 ,获得积分10
8秒前
Akim应助JIANYOUFU采纳,获得30
8秒前
柒柒完成签到,获得积分10
8秒前
9秒前
222发布了新的文献求助10
9秒前
无敌鱼发布了新的文献求助10
10秒前
10秒前
11秒前
yuhui完成签到,获得积分10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733725
求助须知:如何正确求助?哪些是违规求助? 3277951
关于积分的说明 10005953
捐赠科研通 2994047
什么是DOI,文献DOI怎么找? 1642900
邀请新用户注册赠送积分活动 780710
科研通“疑难数据库(出版商)”最低求助积分说明 748968