数学
组合数学
特征向量
拉普拉斯算子
分布(数学)
离散数学
数学分析
量子力学
物理
标识
DOI:10.1016/j.disc.2024.114001
摘要
Let G be a connected graph on n vertices with diameter d. It is known that if 2≤d≤n−2, there are at most n−d Laplacian eigenvalues in the interval [n−d+2,n]. In this paper, we show that if 1≤d≤n−3, there are at most n−d+1 Laplacian eigenvalues in the interval [n−d+1,n]. Moreover, we try to identify the connected graphs on n vertices with diameter d, where 2≤d≤n−3, such that there are at most n−d Laplacian eigenvalues in the interval [n−d+1,n].
科研通智能强力驱动
Strongly Powered by AbleSci AI