Sustainable last-mile distribution with autonomous delivery robots and public transportation

英里 最后一英里(运输) 公共交通 业务 运输工程 机器人 分布(数学) 计算机科学 工程类 地理 人工智能 数学分析 数学 大地测量学
作者
Annarita De Maio,Gianpaolo Ghiani,Demetrio Laganá,Emanuele Manni
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:163: 104615-104615 被引量:7
标识
DOI:10.1016/j.trc.2024.104615
摘要

In recent years, the rapid growth of e-commerce and the need to make last-mile logistics more sustainable have stimulated the development of new distribution paradigms, based on air drones and autonomous delivery robots, which are less sensitive to traffic congestion. In this article we deal with a routing problem in which a fleet of autonomous delivery robots can travel not only on the road network but also on the public transportation system (or part of it) to extend their range of action with a given battery capacity. The problem entails building delivery robot routes synchronized with the rides of the public transportation lines, enabling robots to drop on/off public vehicles, where they use dedicated compartments, to reach customers that would be otherwise out of reach. To this purpose, we develop a tailored destroy-and-repair mechanism that, embedded into a neighborhood search algorithm, allows to effectively explore the feasibility region of large-scale instances. Extensive computational results on instances resembling the distribution of drugs to pharmacies in Rome (Italy) show that the proposed algorithmic mechanism allows to obtain a cost reduction up to about 7.5% with respect to a more traditional approach. Moreover, from a managerial point of view, our experiments show that autonomous delivery robots combined with public transportation can provide huge benefits in terms of costs and emissions reduction, when compared to both traditional and electric vans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮卡皮卡完成签到 ,获得积分10
刚刚
无花果应助qq小兵采纳,获得10
刚刚
刚刚
1111发布了新的文献求助10
1秒前
小马甲应助bwbw采纳,获得10
2秒前
Zhang发布了新的文献求助10
2秒前
会编程真是太好了完成签到 ,获得积分10
2秒前
哭泣的猕猴桃完成签到,获得积分10
3秒前
wwwwyyyy发布了新的文献求助10
3秒前
烧烤完成签到,获得积分10
3秒前
4秒前
4秒前
烩面大师完成签到,获得积分10
4秒前
4秒前
fdd博发布了新的文献求助10
4秒前
神勇的雅香应助Jin采纳,获得10
5秒前
6秒前
星辰大海应助Yenom采纳,获得10
6秒前
jjy完成签到,获得积分10
7秒前
科研通AI5应助雾蓝采纳,获得10
7秒前
大地完成签到,获得积分10
7秒前
大门神完成签到,获得积分10
7秒前
7秒前
苦逼工科仔完成签到,获得积分10
8秒前
gaos发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
从容飞凤完成签到,获得积分10
10秒前
药疯了发布了新的文献求助30
10秒前
今天做实验了吗完成签到 ,获得积分10
11秒前
晚意意意意意完成签到 ,获得积分10
11秒前
Jenny应助xiuxiu_27采纳,获得10
12秒前
12秒前
麻辣爆锅完成签到,获得积分10
12秒前
12秒前
qq小兵发布了新的文献求助10
12秒前
Owen应助littlewhite采纳,获得30
13秒前
3137874883完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759