亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discriminative Segment Focus Network for Fine-grained Video Action Recognition

判别式 光学(聚焦) 计算机科学 动作识别 人工智能 模式识别(心理学) 动作(物理) 物理 量子力学 光学 班级(哲学)
作者
Baoli Sun,Xinchen Ye,Tiantian Yan,Zhihui Wang,Haojie Li,Zhiyong Wang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (7): 1-20 被引量:2
标识
DOI:10.1145/3654671
摘要

Fine-grained video action recognition aims at identifying minor and discriminative variations among fine categories of actions. While many recent action recognition methods have been proposed to better model spatio-temporal representations, how to model the interactions among discriminative atomic actions to effectively characterize inter-class and intra-class variations has been neglected, which is vital for understanding fine-grained actions. In this work, we devise a Discriminative Segment Focus Network (DSFNet) to mine the discriminability of segment correlations and localize discriminative action-relevant segments for fine-grained video action recognition. Firstly, we propose a hierarchic correlation reasoning (HCR) module which explicitly establishes correlations between different segments at multiple temporal scales and enhances each segment by exploiting the correlations with other segments. Secondly, a discriminative segment focus (DSF) module is devised to localize the most action-relevant segments from the enhanced representations of HCR by enforcing the consistency between the discriminability and the classification confidence of a given segment with a consistency constraint. Finally, these localized segment representations are combined with the global action representation of the whole video for boosting final recognition. Extensive experimental results on two fine-grained action recognition datasets, i.e., FineGym and Diving48, and two action recognition datasets, i.e., Kinetics400 and Something-Something, demonstrate the effectiveness of our approach compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
情怀应助冷酷的雁菡采纳,获得10
6秒前
6秒前
12秒前
18秒前
27秒前
hankai发布了新的文献求助30
30秒前
科研通AI2S应助科研通管家采纳,获得30
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
BY完成签到,获得积分10
39秒前
坚定的铃铛应助Apple采纳,获得10
46秒前
HJJHJH发布了新的文献求助50
49秒前
51秒前
54秒前
施含莲发布了新的文献求助10
59秒前
59秒前
1分钟前
1分钟前
####完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
龙玄泽应助风趣的孤云采纳,获得10
1分钟前
辞轲完成签到,获得积分10
1分钟前
1分钟前
风趣的孤云完成签到,获得积分20
1分钟前
李大白完成签到 ,获得积分10
1分钟前
1分钟前
yema完成签到 ,获得积分10
1分钟前
刘开山发布了新的文献求助10
1分钟前
m(_._)m完成签到 ,获得积分0
1分钟前
英俊的铭应助77777采纳,获得10
1分钟前
科目三应助刘开山采纳,获得10
1分钟前
1分钟前
77777发布了新的文献求助10
2分钟前
MasterE完成签到,获得积分10
2分钟前
77777完成签到,获得积分10
2分钟前
科研剧中人完成签到,获得积分0
2分钟前
西门如豹应助是是是采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566604
求助须知:如何正确求助?哪些是违规求助? 3139331
关于积分的说明 9431521
捐赠科研通 2840168
什么是DOI,文献DOI怎么找? 1560963
邀请新用户注册赠送积分活动 730120
科研通“疑难数据库(出版商)”最低求助积分说明 717828