Tail-STEAK: Improve Friend Recommendation for Tail Users via Self-Training Enhanced Knowledge Distillation

培训(气象学) 蒸馏 计算机科学 心理学 化学 色谱法 物理 气象学
作者
Yubo Ma,Chaozhuo Li,Zhou Xiao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (8): 8895-8903
标识
DOI:10.1609/aaai.v38i8.28737
摘要

Graph neural networks (GNNs) are commonly employed in collaborative friend recommendation systems. Nevertheless, recent studies reveal a notable performance gap, particularly for users with limited connections, commonly known as tail users, in contrast to their counterparts with abundant connections (head users). Uniformly treating head and tail users poses two challenges for tail user preference learning: (C1) Label Sparsity, as tail users typically possess limited labels; and (C2) Neighborhood Sparsity, where tail users exhibit sparse observable friendships, leading to distinct preference distributions and performance degradation compared to head users. In response to these challenges, we introduce Tail-STEAK, an innovative framework that combines self-training with enhanced knowledge distillation for tail user representation learning. To address(C1), we present Tail-STEAK-base, a two-stage self-training framework. In the first stage, only head users and their accurate connections are utilized for training, while pseudo links are generated for tail users in the second stage. To tackle (C2), we propose two data augmentation-based self-knowledge distillation pretext tasks. These tasks are seamlessly integrated into different stages of Tail-STEAK-base, culminating in the comprehensive Tail-STEAK framework. Extensive experiments, conducted on state-of-the-art GNN-based friend recommendation models, substantiate the efficacy of Tail-STEAK in significantly improving tail user performance. Our code and data are publicly available at https://github.com/antman9914/Tail-STEAK.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wulalala完成签到,获得积分10
1秒前
康康舞曲完成签到 ,获得积分10
1秒前
yinxx完成签到,获得积分10
1秒前
咖喱咖喱完成签到,获得积分10
1秒前
淡然以蓝完成签到 ,获得积分10
2秒前
澹台无发布了新的文献求助150
2秒前
洋子发布了新的文献求助10
2秒前
千百度完成签到,获得积分10
3秒前
端庄不愁发布了新的文献求助10
4秒前
4秒前
看见回归发布了新的文献求助10
4秒前
LLZ完成签到,获得积分10
4秒前
hello_25baby完成签到,获得积分10
5秒前
5秒前
SciGPT应助朴实凝雁采纳,获得10
5秒前
小鱼儿完成签到,获得积分10
5秒前
斯文败类应助科研白小白采纳,获得10
6秒前
胡言乱语发布了新的文献求助10
6秒前
简w发布了新的文献求助10
6秒前
6秒前
7秒前
末123456完成签到,获得积分10
7秒前
顾矜应助无情的傲玉采纳,获得10
9秒前
星辰大海应助洋子采纳,获得10
9秒前
9秒前
Orange应助fuchao采纳,获得10
9秒前
王永俊完成签到,获得积分10
10秒前
唠叨的谷秋完成签到,获得积分10
10秒前
zhangsudi完成签到,获得积分10
11秒前
张皓123发布了新的文献求助10
11秒前
猴子请来的救兵完成签到,获得积分10
11秒前
等等发布了新的文献求助30
12秒前
义气严青完成签到,获得积分10
12秒前
12秒前
12秒前
xiaolan发布了新的文献求助10
13秒前
奇妙淞发布了新的文献求助10
15秒前
cocoa完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460768
求助须知:如何正确求助?哪些是违规求助? 3054744
关于积分的说明 9044358
捐赠科研通 2744477
什么是DOI,文献DOI怎么找? 1505584
科研通“疑难数据库(出版商)”最低求助积分说明 695743
邀请新用户注册赠送积分活动 695063