Tail-STEAK: Improve Friend Recommendation for Tail Users via Self-Training Enhanced Knowledge Distillation

培训(气象学) 蒸馏 计算机科学 心理学 化学 色谱法 物理 气象学
作者
Yubo Ma,Chaozhuo Li,Zhou Xiao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (8): 8895-8903
标识
DOI:10.1609/aaai.v38i8.28737
摘要

Graph neural networks (GNNs) are commonly employed in collaborative friend recommendation systems. Nevertheless, recent studies reveal a notable performance gap, particularly for users with limited connections, commonly known as tail users, in contrast to their counterparts with abundant connections (head users). Uniformly treating head and tail users poses two challenges for tail user preference learning: (C1) Label Sparsity, as tail users typically possess limited labels; and (C2) Neighborhood Sparsity, where tail users exhibit sparse observable friendships, leading to distinct preference distributions and performance degradation compared to head users. In response to these challenges, we introduce Tail-STEAK, an innovative framework that combines self-training with enhanced knowledge distillation for tail user representation learning. To address(C1), we present Tail-STEAK-base, a two-stage self-training framework. In the first stage, only head users and their accurate connections are utilized for training, while pseudo links are generated for tail users in the second stage. To tackle (C2), we propose two data augmentation-based self-knowledge distillation pretext tasks. These tasks are seamlessly integrated into different stages of Tail-STEAK-base, culminating in the comprehensive Tail-STEAK framework. Extensive experiments, conducted on state-of-the-art GNN-based friend recommendation models, substantiate the efficacy of Tail-STEAK in significantly improving tail user performance. Our code and data are publicly available at https://github.com/antman9914/Tail-STEAK.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
装满阳光的橘子完成签到,获得积分10
刚刚
pqy关闭了pqy文献求助
刚刚
田様应助犹豫的觅云采纳,获得10
刚刚
dsfgbh发布了新的文献求助10
1秒前
感到蔚蓝完成签到,获得积分10
1秒前
ajun完成签到,获得积分10
1秒前
Snow完成签到 ,获得积分10
1秒前
meiyugao发布了新的文献求助10
2秒前
年小年完成签到,获得积分10
2秒前
自信谷冬完成签到,获得积分10
3秒前
Sallxy完成签到 ,获得积分10
3秒前
4秒前
4秒前
anna1992发布了新的文献求助10
4秒前
POLLY完成签到 ,获得积分10
5秒前
Jasper应助鲸鱼采纳,获得10
5秒前
5秒前
CAIJING完成签到,获得积分10
5秒前
深情安青应助研友_Zbb4mZ采纳,获得10
6秒前
姜汁完成签到,获得积分10
6秒前
666完成签到,获得积分20
6秒前
玖文完成签到,获得积分10
6秒前
6秒前
6秒前
JamesPei应助舒一一采纳,获得10
7秒前
Surface发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
文艺的千亦发布了新的文献求助150
9秒前
QQQQQQ发布了新的文献求助10
9秒前
轻风发布了新的文献求助30
9秒前
Muhammad完成签到,获得积分10
9秒前
英姑应助董浩采纳,获得10
10秒前
10秒前
神勇冬莲完成签到,获得积分10
10秒前
世界需要我完成签到,获得积分10
10秒前
CipherSage应助cs采纳,获得10
10秒前
千崧完成签到,获得积分10
10秒前
顺利紫山发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635