Tail-STEAK: Improve Friend Recommendation for Tail Users via Self-Training Enhanced Knowledge Distillation

培训(气象学) 蒸馏 计算机科学 心理学 化学 色谱法 物理 气象学
作者
Yubo Ma,Chaozhuo Li,Zhou Xiao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (8): 8895-8903
标识
DOI:10.1609/aaai.v38i8.28737
摘要

Graph neural networks (GNNs) are commonly employed in collaborative friend recommendation systems. Nevertheless, recent studies reveal a notable performance gap, particularly for users with limited connections, commonly known as tail users, in contrast to their counterparts with abundant connections (head users). Uniformly treating head and tail users poses two challenges for tail user preference learning: (C1) Label Sparsity, as tail users typically possess limited labels; and (C2) Neighborhood Sparsity, where tail users exhibit sparse observable friendships, leading to distinct preference distributions and performance degradation compared to head users. In response to these challenges, we introduce Tail-STEAK, an innovative framework that combines self-training with enhanced knowledge distillation for tail user representation learning. To address(C1), we present Tail-STEAK-base, a two-stage self-training framework. In the first stage, only head users and their accurate connections are utilized for training, while pseudo links are generated for tail users in the second stage. To tackle (C2), we propose two data augmentation-based self-knowledge distillation pretext tasks. These tasks are seamlessly integrated into different stages of Tail-STEAK-base, culminating in the comprehensive Tail-STEAK framework. Extensive experiments, conducted on state-of-the-art GNN-based friend recommendation models, substantiate the efficacy of Tail-STEAK in significantly improving tail user performance. Our code and data are publicly available at https://github.com/antman9914/Tail-STEAK.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hilda007应助渊博采纳,获得10
刚刚
1秒前
1秒前
stay发布了新的文献求助10
1秒前
理想三寻发布了新的文献求助10
1秒前
3秒前
3秒前
充电宝应助江霭采纳,获得10
3秒前
碳酸钠完成签到,获得积分10
3秒前
不忘初心发布了新的文献求助10
3秒前
4秒前
linguo发布了新的文献求助10
4秒前
科研通AI5应助菲菲采纳,获得10
5秒前
充电宝应助AS123采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
星月夜完成签到,获得积分10
6秒前
pinghu完成签到,获得积分10
7秒前
7秒前
科研通AI6应助111采纳,获得10
7秒前
学术小白发布了新的文献求助10
8秒前
dabaigou发布了新的文献求助10
8秒前
领导范儿应助曹能豪采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
852应助尘间雪采纳,获得30
9秒前
威武的皮卡丘完成签到,获得积分10
9秒前
9秒前
不错吧完成签到,获得积分10
9秒前
星期八完成签到,获得积分10
10秒前
sica1102给sica1102的求助进行了留言
10秒前
豆沙卷完成签到,获得积分10
10秒前
kwan发布了新的文献求助20
10秒前
11秒前
科研通AI6应助张小珂采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4989498
求助须知:如何正确求助?哪些是违规求助? 4238780
关于积分的说明 13204012
捐赠科研通 4032918
什么是DOI,文献DOI怎么找? 2206393
邀请新用户注册赠送积分活动 1217687
关于科研通互助平台的介绍 1135821