Multivariable Degradation Modeling and Life Prediction Using Multivariate Fractional Brownian Motion

多元统计 降级(电信) 预言 多元微积分 计算机科学 过程(计算) 分数布朗运动 布朗运动 人工智能 数学 统计 工程类 机器学习 数据挖掘 控制工程 电信 操作系统
作者
Ali Asgari,Wujun Si,Liang Yuan,Krishna Krishnan,Wei Wei
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:248: 110146-110146 被引量:1
标识
DOI:10.1016/j.ress.2024.110146
摘要

In system prognostics and health management, multivariable degradation models have been widely developed to predict the life of complex systems using degradation data of multiple Performance Characteristics (PCs). Recent studies have detected a Long-Term Memory (LTM) effect among the degradation process of various PCs, implying a strong coupling phenomenon between the future degradation behavior and historical degradation trajectory. Although the LTM has been widely integrated into single-PC-based degradation modeling, it has not been considered in multi-PC-based scenarios. To capture LTM among multiple PCs, this article proposes a novel LTM-integrated Multivariate Degradation Model (MDM) for system life prediction based on multivariate fractional Brownian motion, which simultaneously incorporates the cross-correlation among different PCs. To estimate parameters of the LTM-integrated MDM, a maximum likelihood method is developed. Two likelihood-ratio hypothesis tests are developed to test the existence of the overall and individual LTM effect among multiple PCs. Both simulation studies and physical experiments on the performance degradation of integrated energy devices are conducted to validate the proposed model. Results reveal that the proposed LTM-integrated MDM significantly outperforms existing MDMs in life prediction, while the lifetime uncertainty is heavily underestimated by those traditional approaches that neglect the LTM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助搞对采纳,获得10
1秒前
上官若男应助神龙尊者采纳,获得10
2秒前
Clearly发布了新的文献求助10
3秒前
yls发布了新的文献求助10
4秒前
鹿友绿完成签到,获得积分10
4秒前
4秒前
丘比特应助沛文采纳,获得10
5秒前
5秒前
5秒前
zxx0126完成签到,获得积分20
5秒前
Cc完成签到,获得积分10
6秒前
sx完成签到 ,获得积分10
8秒前
柳香芦发布了新的文献求助10
8秒前
8秒前
8秒前
tangyimmo发布了新的文献求助10
8秒前
李圳铭发布了新的文献求助10
9秒前
请叫我风吹麦浪应助青思采纳,获得10
10秒前
小研究牲完成签到,获得积分20
11秒前
asd发布了新的文献求助10
11秒前
Cc发布了新的文献求助10
11秒前
11秒前
刘锦裕完成签到,获得积分10
13秒前
小研究牲发布了新的文献求助10
13秒前
bkagyin应助wenbin采纳,获得10
13秒前
16秒前
19秒前
19秒前
laiyiklam完成签到,获得积分10
19秒前
19秒前
周星星完成签到 ,获得积分20
19秒前
科目三应助zed采纳,获得10
20秒前
小孟要努力完成签到,获得积分10
21秒前
21秒前
乐乐应助sabet采纳,获得10
21秒前
绿叶完成签到,获得积分20
22秒前
完美世界应助璐璇采纳,获得10
23秒前
23秒前
24秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444074
求助须知:如何正确求助?哪些是违规求助? 3040086
关于积分的说明 8980149
捐赠科研通 2728773
什么是DOI,文献DOI怎么找? 1496652
科研通“疑难数据库(出版商)”最低求助积分说明 691803
邀请新用户注册赠送积分活动 689384