已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transferable multi-objective factory layout planning using simulation-based deep reinforcement learning

工厂(面向对象编程) 强化学习 计算机科学 离散事件仿真 过程(计算) 物流 工业工程 平面图(考古学) 工程类 模拟 人工智能 程序设计语言 历史 生态学 考古 生物 操作系统
作者
Matthias Klar,Philipp Schworm,Xiangqian Wu,Peter Simon,Moritz Glatt,Bahram Ravani,Jan C. Aurich
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:74: 487-511
标识
DOI:10.1016/j.jmsy.2024.04.007
摘要

Factory layout planning aims at finding an optimized layout configuration under consideration of varying influences such as the material flow characteristics. Manual layout planning can be characterized as a complex decision-making process due to a large number of possible placement options. Automated planning approaches aim at reducing the manual planning effort by generating optimized layout variants in the early stages of layout planning. Recent developments have introduced deep Reinforcement Learning (RL) based planning approaches that allow to optimize a layout under consideration of a single optimization criterion. However, within layout planning, multiple partially conflicting planning objectives have to be considered. Such multiple objectives are not considered by existing RL-based approaches. This paper addresses this research gap by presenting a novel deep RL-based layout planning approach that allows consideration of multiple objectives for optimization. Furthermore, existing RL-based planning approaches only consider analytically formulated objectives such as the transportation distance. Consequently, dynamic influences in the material flow are neglected which can result in higher operational costs of the future factory. To address this issue, a discrete event simulation module is developed that allows simulating manufacturing and material flow processes simultaneously for any layout configuration generated by the RL approach. Consequently, the presented approach considers material flow simulation results for multi-objective optimization. To investigate the capabilities of RL-based factory layout planning, different RL architectures are compared based on a simplified application scenario. Throughput time, media supply, and material flow clarity are considered as optimization objectives. The best performing architecture is then applied to an exemplary application scenario and compared with the results obtained by a combined version of the genetic algorithm and tabu search, the non-dominated sorting genetic algorithm, and the optimal solution. Finally, two industrial planning scenarios, one focusing on brownfield and one on greenfield planning, are considered. The results show that the performance of RL compared to meta-heuristics depends on the considered computation time. With time the results generated by the RL approach exceed the quality of the best conventional solution by up to 11%. Finally, the potential of applying transfer learning is investigated for three different application scenarios. It is observed that RL can learn generalized patterns for factory layout planning, which allows to significantly reduce the required training time and can lead to improved solution quality. Thus, the use of pre-trained RL models shows a substantial performance potential for automated factory layout planning which cannot be achieved with conventional automated planning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨楼墨客发布了新的文献求助10
2秒前
天真的不凡完成签到 ,获得积分10
2秒前
下文献发布了新的文献求助10
3秒前
3秒前
Jojo完成签到,获得积分10
4秒前
亦屿森完成签到,获得积分10
5秒前
6秒前
叮叮叮铛完成签到,获得积分10
6秒前
生动之云发布了新的文献求助10
6秒前
xiaoding应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
老马哥完成签到 ,获得积分0
9秒前
缥缈傥发布了新的文献求助10
10秒前
峰雨发布了新的文献求助20
10秒前
12秒前
曹梦梦发布了新的文献求助10
12秒前
12秒前
15秒前
17秒前
葛根发布了新的文献求助10
17秒前
18秒前
小草莓发布了新的文献求助10
18秒前
Momo完成签到,获得积分10
21秒前
元宝发布了新的文献求助10
23秒前
23秒前
25秒前
生动之云完成签到,获得积分10
25秒前
28秒前
小阿博完成签到,获得积分10
28秒前
烟花应助希言采纳,获得30
28秒前
元宝完成签到,获得积分10
29秒前
红蝶发布了新的文献求助50
30秒前
杳鸢举报害怕的又晴求助涉嫌违规
31秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158364
求助须知:如何正确求助?哪些是违规求助? 2809628
关于积分的说明 7882803
捐赠科研通 2468219
什么是DOI,文献DOI怎么找? 1314017
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956