Transferable multi-objective factory layout planning using simulation-based deep reinforcement learning

工厂(面向对象编程) 强化学习 计算机科学 离散事件仿真 过程(计算) 物流 工业工程 平面图(考古学) 工程类 模拟 人工智能 程序设计语言 历史 生态学 考古 生物 操作系统
作者
Matthias Klar,Philipp Schworm,Xiangqian Wu,Peter Simon,Moritz Glatt,Bahram Ravani,Jan C. Aurich
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:74: 487-511
标识
DOI:10.1016/j.jmsy.2024.04.007
摘要

Factory layout planning aims at finding an optimized layout configuration under consideration of varying influences such as the material flow characteristics. Manual layout planning can be characterized as a complex decision-making process due to a large number of possible placement options. Automated planning approaches aim at reducing the manual planning effort by generating optimized layout variants in the early stages of layout planning. Recent developments have introduced deep Reinforcement Learning (RL) based planning approaches that allow to optimize a layout under consideration of a single optimization criterion. However, within layout planning, multiple partially conflicting planning objectives have to be considered. Such multiple objectives are not considered by existing RL-based approaches. This paper addresses this research gap by presenting a novel deep RL-based layout planning approach that allows consideration of multiple objectives for optimization. Furthermore, existing RL-based planning approaches only consider analytically formulated objectives such as the transportation distance. Consequently, dynamic influences in the material flow are neglected which can result in higher operational costs of the future factory. To address this issue, a discrete event simulation module is developed that allows simulating manufacturing and material flow processes simultaneously for any layout configuration generated by the RL approach. Consequently, the presented approach considers material flow simulation results for multi-objective optimization. To investigate the capabilities of RL-based factory layout planning, different RL architectures are compared based on a simplified application scenario. Throughput time, media supply, and material flow clarity are considered as optimization objectives. The best performing architecture is then applied to an exemplary application scenario and compared with the results obtained by a combined version of the genetic algorithm and tabu search, the non-dominated sorting genetic algorithm, and the optimal solution. Finally, two industrial planning scenarios, one focusing on brownfield and one on greenfield planning, are considered. The results show that the performance of RL compared to meta-heuristics depends on the considered computation time. With time the results generated by the RL approach exceed the quality of the best conventional solution by up to 11%. Finally, the potential of applying transfer learning is investigated for three different application scenarios. It is observed that RL can learn generalized patterns for factory layout planning, which allows to significantly reduce the required training time and can lead to improved solution quality. Thus, the use of pre-trained RL models shows a substantial performance potential for automated factory layout planning which cannot be achieved with conventional automated planning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiuwen发布了新的文献求助10
刚刚
黑衣人的秘密完成签到,获得积分10
刚刚
刚刚
mushrooms119完成签到,获得积分10
1秒前
1秒前
榨菜发布了新的文献求助10
1秒前
Cindy应助体贴的夕阳采纳,获得10
1秒前
MEME完成签到,获得积分10
2秒前
zfzf0422发布了新的文献求助10
2秒前
2秒前
健忘曼云发布了新的文献求助10
2秒前
drift完成签到,获得积分10
3秒前
3秒前
安谢完成签到,获得积分10
4秒前
852应助小张采纳,获得10
5秒前
活泼的飞双完成签到,获得积分10
6秒前
热情的板栗完成签到,获得积分10
6秒前
7秒前
Loooong应助汤姆采纳,获得10
7秒前
淡定雁开发布了新的文献求助10
7秒前
tianny发布了新的文献求助10
7秒前
111111111发布了新的文献求助10
8秒前
Mian发布了新的文献求助10
8秒前
8秒前
xiuwen完成签到,获得积分10
9秒前
TOMORI酱完成签到,获得积分10
12秒前
justin发布了新的文献求助10
12秒前
皮卡丘完成签到 ,获得积分10
13秒前
13秒前
TT发布了新的文献求助10
14秒前
夜空的光芒完成签到 ,获得积分10
15秒前
15秒前
乐一李完成签到,获得积分10
15秒前
会神完成签到,获得积分20
16秒前
天天快乐应助远方采纳,获得10
18秒前
烟花应助liuq采纳,获得10
18秒前
lixl0725完成签到 ,获得积分10
19秒前
专注秋尽发布了新的文献求助10
19秒前
科研小民工应助研友_LMg7PZ采纳,获得30
20秒前
宸哥完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808