MAGRU: Multi-layer Attention with GRU for Logistics Warehousing Demand Prediction

图层(电子) 业务 计算机科学 运筹学 工程类 材料科学 纳米技术
作者
Ran Tian,Bo Wang,Chu Wang
出处
期刊:Ksii Transactions on Internet and Information Systems [Korean Society for Internet Information]
卷期号:18 (3) 被引量:1
标识
DOI:10.3837/tiis.2024.03.001
摘要

Warehousing demand prediction is an essential part of the supply chain, providing a fundamental basis for product manufacturing, replenishment, warehouse planning, etc. Existing forecasting methods cannot produce accurate forecasts since warehouse demand is affected by external factors such as holidays and seasons.Some aspects, such as consumer psychology and producer reputation, are challenging to quantify.The data can fluctuate widely or do not show obvious trend cycles.We introduce a new model for warehouse demand prediction called MAGRU, which stands for Multi-layer Attention with GRU.In the model, firstly, we perform the embedding operation on the input sequence to quantify the external influences; after that, we implement an encoder using GRU and the attention mechanism.The hidden state of GRU captures essential time series.In the decoder, we use attention again to select the key hidden states among all-time slices as the data to be fed into the GRU network.Experimental results show that this model has higher accuracy than RNN, LSTM, GRU, Prophet, XGboost, and DARNN.Using mean absolute error (MAE) and symmetric mean absolute percentage error(SMAPE) to evaluate the experimental results, MAGRU's MAE, RMSE, and SMAPE decreased by 7.65%, 10.03%, and 8.87% over GRU-LSTM, the current best model for solving this type of problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春秋蝉完成签到 ,获得积分10
刚刚
嘿嘿完成签到 ,获得积分20
刚刚
酷波er应助酷炫迎波采纳,获得30
1秒前
栗子栗栗子完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
科研通AI2S应助cc采纳,获得10
3秒前
科研通AI2S应助cc采纳,获得10
3秒前
可爱的函函应助了了采纳,获得10
3秒前
4秒前
dc123456发布了新的文献求助10
5秒前
6秒前
GodMG完成签到,获得积分10
7秒前
8秒前
8秒前
杨娟娟发布了新的文献求助10
8秒前
8秒前
芯止谭轩发布了新的文献求助10
8秒前
hk完成签到,获得积分10
9秒前
9秒前
pluto应助辣椒酱采纳,获得10
10秒前
10秒前
CipherSage应助山青水秀采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
11秒前
YULIA应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Singularity应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
Singularity应助科研通管家采纳,获得20
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Handbook of Qualitative Research 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542