Achromatic Single Metalens Imaging via Deep Neural Network

消色差透镜 光学 材料科学 物理
作者
Yunxi Dong,Bowen Zheng,Hang Li,Hong Tang,Huan Zhao,Yi Huang,Sensong An,Hualiang Zhang
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:11 (4): 1645-1656 被引量:4
标识
DOI:10.1021/acsphotonics.3c01870
摘要

Meta-optics are attracting intensive interest as alternatives to traditional optical systems comprising multiple lenses and diffractive elements. Among applications, single metalens imaging is highly attractive due to the potential for achieving significant size reduction and simplified design. However, single metalenses exhibit severe chromatic performance degradation arising from material dispersion and the nature of singlet optics, making them unsuitable for full-color imaging requiring achromatic performance. In this work, we propose and validate a deep learning-based approach to enhance full-color imaging quality in single metalens systems. Our developed deep learning networks computationally reconstruct raw imaging captures by effectively refocusing the red, green, and blue primary channels, eliminating chromatic aberration and vignetting, and enhancing resolution. Importantly, these improvements are achieved without requiring any hardware modifications to the metalens itself. Through comprehensive evaluations on diverse synthetic and real-world data sets captured under various environmental conditions and focusing distances, our approach consistently demonstrates significant enhancements in image quality. By providing a practical and simplified implementation, our method overcomes the inherent limitations of meta-optics and enables the realization of achromatic metalenses without complex engineering. By addressing key challenges in full-color imaging for single metalenses, this research enables new practical applications in photography, videography, and micrography via the easy integration of metalenses with commercial cameras.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
散养溜达鸡完成签到,获得积分10
2秒前
Akim应助ZSJ采纳,获得10
2秒前
刘科江完成签到,获得积分10
2秒前
陈橙完成签到,获得积分10
4秒前
Qing发布了新的文献求助10
5秒前
wanci应助Huay采纳,获得30
5秒前
Emma完成签到,获得积分20
7秒前
思源应助无辜紫菜采纳,获得10
8秒前
材1完成签到 ,获得积分10
9秒前
9秒前
bbll完成签到,获得积分10
9秒前
英俊的铭应助郝宝真采纳,获得10
10秒前
10秒前
lkun发布了新的文献求助10
12秒前
Fred Guan完成签到 ,获得积分10
13秒前
洁净汝燕发布了新的文献求助10
14秒前
失眠的哈密瓜完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
lxt完成签到,获得积分10
16秒前
Gstar完成签到,获得积分10
17秒前
唐煜城完成签到,获得积分10
17秒前
17秒前
ding应助Qing采纳,获得10
18秒前
ZSJ发布了新的文献求助10
21秒前
tianzml0应助ruanyh采纳,获得20
21秒前
PG完成签到 ,获得积分0
22秒前
过滤膜发布了新的文献求助10
22秒前
阳光香寒完成签到 ,获得积分10
22秒前
lkun完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
朴实的面包完成签到 ,获得积分10
24秒前
warmth完成签到,获得积分10
25秒前
lilylch完成签到 ,获得积分10
25秒前
无辜紫菜发布了新的文献求助10
26秒前
happyccch完成签到,获得积分0
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175