BI-RADS Category Assignments by GPT-3.5, GPT-4, and Google Bard: A Multilanguage Study

医学 麦克内马尔试验 双雷达 乳腺摄影术 介绍 乳房成像 乳腺癌 放射科 家庭医学 癌症 内科学 统计 数学
作者
Andrea Cozzi,Katja Pinker,Andri Hidber,Tianyu Zhang,Luca Bonomo,Roberto Lo Gullo,Blake Christianson,Marco Curti,Stefania Rizzo,Filippo Del Grande,Ritse M. Mann,Simone Schiaffino
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:43
标识
DOI:10.1148/radiol.232133
摘要

Background The performance of publicly available large language models (LLMs) remains unclear for complex clinical tasks. Purpose To evaluate the agreement between human readers and LLMs for Breast Imaging Reporting and Data System (BI-RADS) categories assigned based on breast imaging reports written in three languages and to assess the impact of discordant category assignments on clinical management. Materials and Methods This retrospective study included reports for women who underwent MRI, mammography, and/or US for breast cancer screening or diagnostic purposes at three referral centers. Reports with findings categorized as BI-RADS 1-5 and written in Italian, English, or Dutch were collected between January 2000 and October 2023. Board-certified breast radiologists and the LLMs GPT-3.5 and GPT-4 (OpenAI) and Bard, now called Gemini (Google), assigned BI-RADS categories using only the findings described by the original radiologists. Agreement between human readers and LLMs for BI-RADS categories was assessed using the Gwet agreement coefficient (AC1 value). Frequencies were calculated for changes in BI-RADS category assignments that would affect clinical management (ie, BI-RADS 0 vs BI-RADS 1 or 2 vs BI-RADS 3 vs BI-RADS 4 or 5) and compared using the McNemar test. Results Across 2400 reports, agreement between the original and reviewing radiologists was almost perfect (AC1 = 0.91), while agreement between the original radiologists and GPT-4, GPT-3.5, and Bard was moderate (AC1 = 0.52, 0.48, and 0.42, respectively). Across human readers and LLMs, differences were observed in the frequency of BI-RADS category upgrades or downgrades that would result in changed clinical management (118 of 2400 [4.9%] for human readers, 611 of 2400 [25.5%] for Bard, 573 of 2400 [23.9%] for GPT-3.5, and 435 of 2400 [18.1%] for GPT-4;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大辉完成签到 ,获得积分10
3秒前
所所应助英勇靖雁采纳,获得10
3秒前
4秒前
小鱼儿发布了新的文献求助10
4秒前
Felix0917完成签到,获得积分10
5秒前
5秒前
JiayanLi完成签到,获得积分20
5秒前
chenchao完成签到,获得积分10
6秒前
8秒前
所所应助汎影采纳,获得10
9秒前
UHPC发布了新的文献求助10
10秒前
10秒前
华仔应助寻光人采纳,获得10
11秒前
赘婿应助罗彩明采纳,获得10
11秒前
11秒前
11秒前
xiaofengyyy发布了新的文献求助10
12秒前
我是老大应助sunyuhao采纳,获得30
13秒前
14秒前
顾矜应助sunwei采纳,获得10
15秒前
SciGPT应助现实的安波采纳,获得10
16秒前
李123发布了新的文献求助10
16秒前
李健的小迷弟应助汎影采纳,获得10
17秒前
18秒前
orixero应助Applause采纳,获得10
18秒前
19秒前
小蘑菇应助太阳采纳,获得10
19秒前
19秒前
哑巴完成签到,获得积分10
19秒前
19秒前
浮游应助科研通管家采纳,获得10
20秒前
三无发布了新的文献求助10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得30
20秒前
Leanne应助科研通管家采纳,获得30
20秒前
无花果应助科研通管家采纳,获得10
20秒前
mmmmb应助科研通管家采纳,获得30
20秒前
20秒前
李燕君应助科研通管家采纳,获得30
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340