BI-RADS Category Assignments by GPT-3.5, GPT-4, and Google Bard: A Multilanguage Study

医学 麦克内马尔试验 双雷达 乳腺摄影术 介绍 乳房成像 乳腺癌 放射科 家庭医学 癌症 内科学 统计 数学
作者
Andrea Cozzi,Katja Pinker,Andri Hidber,Tianyu Zhang,Luca Bonomo,Roberto Lo Gullo,Blake Christianson,Marco Curti,Stefania Rizzo,Filippo Del Grande,Ritse M. Mann,Simone Schiaffino
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:43
标识
DOI:10.1148/radiol.232133
摘要

Background The performance of publicly available large language models (LLMs) remains unclear for complex clinical tasks. Purpose To evaluate the agreement between human readers and LLMs for Breast Imaging Reporting and Data System (BI-RADS) categories assigned based on breast imaging reports written in three languages and to assess the impact of discordant category assignments on clinical management. Materials and Methods This retrospective study included reports for women who underwent MRI, mammography, and/or US for breast cancer screening or diagnostic purposes at three referral centers. Reports with findings categorized as BI-RADS 1-5 and written in Italian, English, or Dutch were collected between January 2000 and October 2023. Board-certified breast radiologists and the LLMs GPT-3.5 and GPT-4 (OpenAI) and Bard, now called Gemini (Google), assigned BI-RADS categories using only the findings described by the original radiologists. Agreement between human readers and LLMs for BI-RADS categories was assessed using the Gwet agreement coefficient (AC1 value). Frequencies were calculated for changes in BI-RADS category assignments that would affect clinical management (ie, BI-RADS 0 vs BI-RADS 1 or 2 vs BI-RADS 3 vs BI-RADS 4 or 5) and compared using the McNemar test. Results Across 2400 reports, agreement between the original and reviewing radiologists was almost perfect (AC1 = 0.91), while agreement between the original radiologists and GPT-4, GPT-3.5, and Bard was moderate (AC1 = 0.52, 0.48, and 0.42, respectively). Across human readers and LLMs, differences were observed in the frequency of BI-RADS category upgrades or downgrades that would result in changed clinical management (118 of 2400 [4.9%] for human readers, 611 of 2400 [25.5%] for Bard, 573 of 2400 [23.9%] for GPT-3.5, and 435 of 2400 [18.1%] for GPT-4;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王明磊发布了新的文献求助10
1秒前
1秒前
陈豆豆完成签到,获得积分10
1秒前
2秒前
4秒前
4秒前
jenningseastera应助神勇谷梦采纳,获得10
4秒前
kk发布了新的文献求助10
5秒前
5秒前
赘婿应助77采纳,获得10
5秒前
单薄不惜完成签到,获得积分10
6秒前
77发布了新的文献求助10
7秒前
落雨发布了新的文献求助10
7秒前
7秒前
8秒前
斯文问旋完成签到,获得积分10
8秒前
lvsehx发布了新的文献求助10
8秒前
pophoo完成签到,获得积分10
8秒前
9秒前
ck完成签到,获得积分20
10秒前
cruise发布了新的文献求助10
10秒前
真实的语堂完成签到,获得积分10
10秒前
11秒前
开心青柏完成签到 ,获得积分10
12秒前
JamesPei应助聂国烽采纳,获得50
13秒前
研友_LMBa6n发布了新的文献求助10
13秒前
13秒前
乐乐应助TIANCAI采纳,获得10
14秒前
香菜掰掰关注了科研通微信公众号
16秒前
煎饼狗子发布了新的文献求助10
16秒前
犹豫的牛排完成签到,获得积分10
17秒前
77完成签到,获得积分10
17秒前
19秒前
111完成签到 ,获得积分10
21秒前
研友_VZG7GZ应助诺诺采纳,获得10
21秒前
hujuan完成签到 ,获得积分10
23秒前
小二郎应助眯眯眼的惜芹采纳,获得10
24秒前
曾阿牛发布了新的文献求助10
24秒前
研友_LMBa6n发布了新的文献求助10
26秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972