BI-RADS Category Assignments by GPT-3.5, GPT-4, and Google Bard: A Multilanguage Study

医学 麦克内马尔试验 双雷达 乳腺摄影术 介绍 乳房成像 乳腺癌 放射科 家庭医学 癌症 内科学 统计 数学
作者
Andrea Cozzi,Katja Pinker,Andri Hidber,Tianyu Zhang,Luca Bonomo,Roberto Lo Gullo,Blake Christianson,Marco Curti,Stefania Rizzo,Filippo Del Grande,Ritse M. Mann,Simone Schiaffino
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:5
标识
DOI:10.1148/radiol.232133
摘要

Background The performance of publicly available large language models (LLMs) remains unclear for complex clinical tasks. Purpose To evaluate the agreement between human readers and LLMs for Breast Imaging Reporting and Data System (BI-RADS) categories assigned based on breast imaging reports written in three languages and to assess the impact of discordant category assignments on clinical management. Materials and Methods This retrospective study included reports for women who underwent MRI, mammography, and/or US for breast cancer screening or diagnostic purposes at three referral centers. Reports with findings categorized as BI-RADS 1-5 and written in Italian, English, or Dutch were collected between January 2000 and October 2023. Board-certified breast radiologists and the LLMs GPT-3.5 and GPT-4 (OpenAI) and Bard, now called Gemini (Google), assigned BI-RADS categories using only the findings described by the original radiologists. Agreement between human readers and LLMs for BI-RADS categories was assessed using the Gwet agreement coefficient (AC1 value). Frequencies were calculated for changes in BI-RADS category assignments that would affect clinical management (ie, BI-RADS 0 vs BI-RADS 1 or 2 vs BI-RADS 3 vs BI-RADS 4 or 5) and compared using the McNemar test. Results Across 2400 reports, agreement between the original and reviewing radiologists was almost perfect (AC1 = 0.91), while agreement between the original radiologists and GPT-4, GPT-3.5, and Bard was moderate (AC1 = 0.52, 0.48, and 0.42, respectively). Across human readers and LLMs, differences were observed in the frequency of BI-RADS category upgrades or downgrades that would result in changed clinical management (118 of 2400 [4.9%] for human readers, 611 of 2400 [25.5%] for Bard, 573 of 2400 [23.9%] for GPT-3.5, and 435 of 2400 [18.1%] for GPT-4;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助xw采纳,获得30
刚刚
momo完成签到,获得积分20
刚刚
李健应助嘞是举仔采纳,获得10
刚刚
米玛吗发布了新的文献求助10
1秒前
1秒前
2秒前
大个应助zyfqpc采纳,获得200
2秒前
吉祥应助谦让成协采纳,获得30
2秒前
3秒前
3秒前
李爱国应助sep采纳,获得10
3秒前
Noldor应助积极干饭采纳,获得10
3秒前
3秒前
画画完成签到,获得积分10
4秒前
5秒前
6秒前
momo发布了新的文献求助10
6秒前
olivia发布了新的文献求助10
6秒前
7秒前
星辰大海应助糊涂的丹南采纳,获得10
7秒前
Chenqzl发布了新的文献求助10
8秒前
朝阳完成签到 ,获得积分10
8秒前
小烦同学完成签到,获得积分10
8秒前
hdh016发布了新的文献求助10
8秒前
LaInh完成签到,获得积分10
8秒前
小星星应助lazyg5403采纳,获得10
9秒前
guobiao发布了新的文献求助10
10秒前
10秒前
万能图书馆应助等等采纳,获得10
11秒前
大卫在分享应助冷艳易文采纳,获得10
12秒前
胡椒味煎蛋完成签到,获得积分10
12秒前
聚乙二醇发布了新的文献求助10
12秒前
14秒前
14秒前
安7+发布了新的文献求助10
15秒前
芝芝霉霉发布了新的文献求助10
15秒前
Jadie完成签到,获得积分10
15秒前
所所应助hello采纳,获得30
15秒前
谋学完成签到,获得积分20
16秒前
大卫在分享应助小吴同志采纳,获得10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799545
关于积分的说明 7835454
捐赠科研通 2456868
什么是DOI,文献DOI怎么找? 1307446
科研通“疑难数据库(出版商)”最低求助积分说明 628207
版权声明 601655