BI-RADS Category Assignments by GPT-3.5, GPT-4, and Google Bard: A Multilanguage Study

医学 麦克内马尔试验 双雷达 乳腺摄影术 介绍 乳房成像 乳腺癌 放射科 家庭医学 癌症 内科学 统计 数学
作者
Andrea Cozzi,Katja Pinker,Andri Hidber,Tianyu Zhang,Luca Bonomo,Roberto Lo Gullo,Blake Christianson,Marco Curti,Stefania Rizzo,Filippo Del Grande,Ritse M. Mann,Simone Schiaffino
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:20
标识
DOI:10.1148/radiol.232133
摘要

Background The performance of publicly available large language models (LLMs) remains unclear for complex clinical tasks. Purpose To evaluate the agreement between human readers and LLMs for Breast Imaging Reporting and Data System (BI-RADS) categories assigned based on breast imaging reports written in three languages and to assess the impact of discordant category assignments on clinical management. Materials and Methods This retrospective study included reports for women who underwent MRI, mammography, and/or US for breast cancer screening or diagnostic purposes at three referral centers. Reports with findings categorized as BI-RADS 1-5 and written in Italian, English, or Dutch were collected between January 2000 and October 2023. Board-certified breast radiologists and the LLMs GPT-3.5 and GPT-4 (OpenAI) and Bard, now called Gemini (Google), assigned BI-RADS categories using only the findings described by the original radiologists. Agreement between human readers and LLMs for BI-RADS categories was assessed using the Gwet agreement coefficient (AC1 value). Frequencies were calculated for changes in BI-RADS category assignments that would affect clinical management (ie, BI-RADS 0 vs BI-RADS 1 or 2 vs BI-RADS 3 vs BI-RADS 4 or 5) and compared using the McNemar test. Results Across 2400 reports, agreement between the original and reviewing radiologists was almost perfect (AC1 = 0.91), while agreement between the original radiologists and GPT-4, GPT-3.5, and Bard was moderate (AC1 = 0.52, 0.48, and 0.42, respectively). Across human readers and LLMs, differences were observed in the frequency of BI-RADS category upgrades or downgrades that would result in changed clinical management (118 of 2400 [4.9%] for human readers, 611 of 2400 [25.5%] for Bard, 573 of 2400 [23.9%] for GPT-3.5, and 435 of 2400 [18.1%] for GPT-4;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yukino发布了新的文献求助10
1秒前
Sun发布了新的文献求助10
1秒前
老木虫发布了新的文献求助10
1秒前
1秒前
典雅嫣完成签到,获得积分10
2秒前
顾君如完成签到,获得积分10
2秒前
ZL发布了新的文献求助10
2秒前
3秒前
还行完成签到 ,获得积分10
3秒前
yyl发布了新的文献求助10
3秒前
晨凌夜影完成签到,获得积分10
4秒前
4秒前
王梽旭完成签到,获得积分20
4秒前
5秒前
xiaowanzi发布了新的文献求助10
5秒前
星辰大海应助xpf采纳,获得10
5秒前
隐形曼青应助张可采纳,获得10
5秒前
泡泡糖pt发布了新的文献求助10
5秒前
5秒前
小二郎应助健忘的含卉采纳,获得30
5秒前
莉亚发布了新的文献求助10
6秒前
bbanshan完成签到,获得积分10
6秒前
优雅羽毛发布了新的文献求助10
6秒前
FashionBoy应助zhongxianghua采纳,获得10
6秒前
6秒前
Hello应助mzp采纳,获得10
7秒前
852应助于佳采纳,获得10
8秒前
充电宝应助0Miles采纳,获得10
8秒前
8秒前
8秒前
8秒前
许哲发布了新的文献求助10
9秒前
Dawn完成签到,获得积分10
9秒前
芝士椰果完成签到,获得积分10
9秒前
诚心代芙完成签到 ,获得积分10
10秒前
10秒前
10秒前
zpw123完成签到,获得积分20
10秒前
11秒前
Blankcanva完成签到,获得积分10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730039
求助须知:如何正确求助?哪些是违规求助? 3274929
关于积分的说明 9989600
捐赠科研通 2990336
什么是DOI,文献DOI怎么找? 1641074
邀请新用户注册赠送积分活动 779534
科研通“疑难数据库(出版商)”最低求助积分说明 748266