摘要
Tomato (Solanum lycopersicum L.) is one of the most important vegetable crops in China. In October 2023, a new bacterial disease was discovered on tomato plants in a 0.3-acre farm's greenhouse (35.514806N, 118.996106E) in Longshan Town, Shandong Province, China. Over 50% of the tomato plants showed symptoms of stem rot, leaf wilt, or plant death. Three diseased tomato plants were collected for pathogen isolation and purification. Two leaf samples, each about 1 cm2, were cut from the junction area of healthy and diseased parts and disinfected with 75% alcohol for 60 s, followed by 0.1% HgCl2 for 90 s, and then washed three times with sterilized H2O. The samples were subsequently ground with 1.0 mL sterilized H2O. The ground samples were diluted to 10−4, 10−5, and 10−6 and then were plated on a potato dextrose agar (PDA) plate, respectively. White mucous bacterial colonies appeared at 28℃ for 24~48 h, no fungal colony was observed. Six bacterial colonies were randomly selected for gram staining and found to be gram-negative. To further determine their species classification, fragments of the 16SrDNA, hsp60, gyrB, and rpoB genes were separately amplified using previously reported PCR conditions and with primer pairs, including 27F/1492R (Wu et al., 2023), HSP60-F /HSP60-R (Gül et al., 2023), gyrB UP-1 / gyrB UP-2r (Yamamoto et al., 1995) and rpoB CM81-F / rpoB CM32b-R (Brady et al., 2008). Sequence analysis showed that the obtained sequences of the 16SrDNA, hsp60, gyrB, and rpoB genes among these six colonies were identical and 100%, 100%, 99.31%, and 99.36% similar to those of Enterobacter mori accessions OP601841 (with a coverage of 100%), MT199160 (83%), OP676246 (100%), and MN594495 (100%), at nucleotide level, respectively. Sequences of the above four genes of 23LSFQ were submitted to GenBank under the accession numbers PP461247, PP474090, PP136037, and PP136038, respectively. We selected one of these six colonies, 23LSFQ, for further analysis. The phylogenetic tree based on the concatenated sequences of the above four genes using the maximum likelihood method with MEGAX software showed that 23LSFQ is grouped with E. mori LMG25706 (NCBI: txid980518). To determine the pathogenicity of 23LSFQ , we sprayed 23LSFQ (OD600=0.8) onto five 30-day-old healthy plants of the tomato cultivars Alisa Craig, Jinpeng NO.1, and Chaobei, respectively. These seedlings were incubated in a chamber at 28°C with a 16 h light/ 8h dark photoperiod and 60% relative humidity. The leaves of the inoculated plants became curled and wilted at two days post inoculation (dpi) and appeared necrotic at 10 dpi. The symptoms were similar to those observed in field-infected tomato plants. No symptoms were observed on the plants inoculated with water. We further sequenced the re-isolated bacteria from the symptomatic inoculated seedlings. Results showed that they belong to E. mori. The experiment was repeated three times. E. mori has been found to cause diseases on peaches (Ahmad et al., 2021), watermelons (Wu et al., 2023), Canna indica, (Zhang et al., 2023), and strawberries (Ji et al., 2023). E. cloacae has been found to cause diseases on tomatoes in Heilongjiang province (Jin et al., 2023). This is the first report of E. mori causing leaf yellowing and wilting on tomatoes in China. These results are significant for the safe production and disease control of greenhouse tomatoes.