Fruit and vegetable disease detection and classification: Recent trends, challenges, and future opportunities

计算机科学 数据科学 人工智能
作者
Sachin Kumar Gupta,Ashish Kumar Tripathi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108260-108260 被引量:15
标识
DOI:10.1016/j.engappai.2024.108260
摘要

Fruits and vegetables are major sources of nutrients for the majority of the population across the globe. With the rapid increase in population, the objectives of the future agro-industry are to reduce product loss while increasing product quality and productivity considerably. Consequently, farmers need to be assisted with cutting-edge technologies for sustainable, eco-friendly, and efficient farming. Smart farming for early disease recognition and control is the current hot-spot research objective in the fruitage domain. The precision agriculture era has been revolutionized by federating cutting-edge technologies like machine learning, deep learning, and, the Internet-of-Things. However, the existing studies focused on the impact of individual technology on single or multiple cultivars of edible fruits or vegetables. Limited areas of the fruitage disease remain explored, necessitating further investigation into the research gaps and challenges identified for implementing the smart practices in real-field farmlands. In this paper, a comprehensive survey of recent advancements in fruit and vegetable disease identification and classification is presented. The technology-wise state-of-the-art findings, gaps, challenges, and future opportunities for fruitage disease recognition have been presented, covering 99 research articles. Moreover, the corpus of publicly available fruit and vegetable datasets has been investigated, with the existing gaps, improvements, and future requirements. The research paper concludes with challenges and a future outlook that promises to be a very significant and valuable resource for researchers working in the area of agronomic disease monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助ZZDXXX采纳,获得10
1秒前
1秒前
英俊的铭应助无际采纳,获得50
2秒前
3秒前
3秒前
4秒前
LeijieChen完成签到,获得积分10
5秒前
7秒前
7秒前
椰子发布了新的文献求助10
8秒前
9秒前
9秒前
斯文败类应助adazbd采纳,获得10
9秒前
10秒前
JamesPei应助耍酷的指甲油采纳,获得10
11秒前
11秒前
Elaine发布了新的文献求助10
12秒前
zmy发布了新的文献求助10
12秒前
ZZDXXX发布了新的文献求助10
13秒前
科研通AI5应助风中的安珊采纳,获得10
13秒前
14秒前
gloval发布了新的文献求助30
14秒前
holic发布了新的文献求助10
14秒前
15秒前
111完成签到 ,获得积分10
15秒前
16秒前
lll完成签到 ,获得积分10
17秒前
黑苹果完成签到,获得积分10
17秒前
18秒前
薛枏完成签到,获得积分10
18秒前
123好完成签到,获得积分20
18秒前
haidayu发布了新的文献求助10
19秒前
疯少发布了新的文献求助10
19秒前
可可完成签到,获得积分10
19秒前
科研通AI5应助阳光易巧采纳,获得10
20秒前
20秒前
XXXX完成签到,获得积分20
20秒前
21秒前
21秒前
123好发布了新的文献求助20
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728265
求助须知:如何正确求助?哪些是违规求助? 3273343
关于积分的说明 9981224
捐赠科研通 2988702
什么是DOI,文献DOI怎么找? 1639784
邀请新用户注册赠送积分活动 778991
科研通“疑难数据库(出版商)”最低求助积分说明 747847