Predicting ICU Interventions: A Transparent Decision Support Model Based on Multivariate Time Series Graph Convolutional Neural Network

可解释性 计算机科学 多元统计 心理干预 临床决策支持系统 卷积神经网络 人工智能 重症监护室 机器学习 数据挖掘 决策支持系统 医学 重症监护医学 精神科
作者
Zhen Xu,Jinjin Guo,Lang Qin,Yuntao Xie,Yao Xiao,Xinran Lin,Qiming Li,Xinyang Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3709-3720
标识
DOI:10.1109/jbhi.2024.3379998
摘要

In this study, we present a novel approach for predicting interventions for patients in the intensive care unit using a multivariate time series graph convolutional neural network. Our method addresses two critical challenges: the need for timely and accurate decisions based on changing physiological signals, drug administration information, and static characteristics; and the need for interpretability in the decision-making process. Drawing on real-world ICU records from the MIMIC-III dataset, we demonstrate that our approach significantly improves upon existing machine learning and deep learning methods for predicting two targeted interventions, mechanical ventilation and vasopressors. Our model achieved an accuracy improvement from 81.6% to 91.9% and a F1 score improvement from 0.524 to 0.606 for predicting mechanical ventilation interventions. For predicting vasopressor interventions, our model achieved an accuracy improvement from 76.3% to 82.7% and a F1 score improvement from 0.509 to 0.619. We also assessed the interpretability by performing an adjacency matrix importance analysis, which revealed that our model uses clinically meaningful and appropriate features for prediction. This critical aspect can help clinicians gain insights into the underlying mechanisms of interventions, allowing them to make more informed and precise clinical decisions. Overall, our study represents a significant step forward in the development of decision support systems for ICU patient care, providing a powerful tool for improving clinical outcomes and enhancing patient safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助完美的雨泽采纳,获得10
2秒前
科研通AI6应助Lorain采纳,获得10
2秒前
都学好了完成签到,获得积分10
2秒前
FashionBoy应助美好幻灵采纳,获得10
4秒前
余三浪完成签到,获得积分10
4秒前
Orange应助高挑的小刺猬采纳,获得10
4秒前
5秒前
英姑应助masterwjc采纳,获得30
6秒前
彭于晏应助Huang采纳,获得10
7秒前
7秒前
damiao发布了新的文献求助10
9秒前
10秒前
卢文完成签到,获得积分20
12秒前
12秒前
斯文明杰发布了新的文献求助10
12秒前
你吃饱了吗完成签到,获得积分10
14秒前
宁作我完成签到 ,获得积分10
14秒前
Icelyn发布了新的文献求助10
16秒前
充电宝应助Lorain采纳,获得10
16秒前
Moihan完成签到,获得积分10
18秒前
倾幂发布了新的文献求助20
22秒前
Wk应助老实的玉米采纳,获得10
24秒前
25秒前
小青椒应助江峰采纳,获得100
26秒前
酷炫迎波完成签到,获得积分10
26秒前
26秒前
不来的人完成签到,获得积分10
26秒前
damiao完成签到,获得积分10
27秒前
无聊的怀绿完成签到,获得积分10
27秒前
斯文败类应助11111111111111采纳,获得10
27秒前
呐呐完成签到,获得积分10
28秒前
CodeCraft应助庄生采纳,获得10
30秒前
宁作我关注了科研通微信公众号
30秒前
凉水发布了新的文献求助10
31秒前
31秒前
Lorain发布了新的文献求助10
32秒前
32秒前
ZYP应助Moihan采纳,获得10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546220
求助须知:如何正确求助?哪些是违规求助? 3977613
关于积分的说明 12316733
捐赠科研通 3645975
什么是DOI,文献DOI怎么找? 2007920
邀请新用户注册赠送积分活动 1043462
科研通“疑难数据库(出版商)”最低求助积分说明 932180