Predicting ICU Interventions: A Transparent Decision Support Model Based on Multivariate Time Series Graph Convolutional Neural Network

可解释性 计算机科学 多元统计 心理干预 临床决策支持系统 卷积神经网络 人工智能 重症监护室 机器学习 数据挖掘 决策支持系统 医学 重症监护医学 精神科
作者
Zhen Xu,Jinjin Guo,Lang Qin,Yuntao Xie,Yao Xiao,Xinran Lin,Qiming Li,Xinyang Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3709-3720 被引量:5
标识
DOI:10.1109/jbhi.2024.3379998
摘要

In this study, we present a novel approach for predicting interventions for patients in the intensive care unit using a multivariate time series graph convolutional neural network. Our method addresses two critical challenges: the need for timely and accurate decisions based on changing physiological signals, drug administration information, and static characteristics; and the need for interpretability in the decision-making process. Drawing on real-world ICU records from the MIMIC-III dataset, we demonstrate that our approach significantly improves upon existing machine learning and deep learning methods for predicting two targeted interventions, mechanical ventilation and vasopressors. Our model achieved an accuracy improvement from 81.6% to 91.9% and a F1 score improvement from 0.524 to 0.606 for predicting mechanical ventilation interventions. For predicting vasopressor interventions, our model achieved an accuracy improvement from 76.3% to 82.7% and a F1 score improvement from 0.509 to 0.619. We also assessed the interpretability by performing an adjacency matrix importance analysis, which revealed that our model uses clinically meaningful and appropriate features for prediction. This critical aspect can help clinicians gain insights into the underlying mechanisms of interventions, allowing them to make more informed and precise clinical decisions. Overall, our study represents a significant step forward in the development of decision support systems for ICU patient care, providing a powerful tool for improving clinical outcomes and enhancing patient safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助猪肉采纳,获得10
刚刚
情怀应助Cindy采纳,获得10
2秒前
吉星高照应助仍无恙采纳,获得10
2秒前
volcano完成签到,获得积分20
3秒前
3秒前
lll完成签到,获得积分10
5秒前
5秒前
深深关注了科研通微信公众号
5秒前
拾贰完成签到 ,获得积分10
6秒前
XTQ发布了新的文献求助10
6秒前
8秒前
9秒前
9秒前
消音器完成签到,获得积分20
9秒前
Yvonne完成签到 ,获得积分10
9秒前
9秒前
10秒前
12秒前
14秒前
dj完成签到,获得积分10
14秒前
孤鲸游发布了新的文献求助30
15秒前
15秒前
hui发布了新的文献求助10
15秒前
16秒前
笑点低的一一完成签到,获得积分10
16秒前
风趣亦巧完成签到,获得积分10
18秒前
XTQ完成签到,获得积分10
18秒前
PINK完成签到,获得积分10
18秒前
19秒前
隐形曼青应助最善良的人采纳,获得10
20秒前
hui完成签到,获得积分10
21秒前
baobaonaixi完成签到,获得积分10
22秒前
22秒前
24秒前
24秒前
端庄的寄凡完成签到 ,获得积分10
25秒前
Polaris完成签到,获得积分10
25秒前
风趣亦巧发布了新的文献求助10
26秒前
月亮完成签到,获得积分10
26秒前
CHEN完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363