Predicting ICU Interventions: A Transparent Decision Support Model Based on Multivariate Time Series Graph Convolutional Neural Network

可解释性 计算机科学 多元统计 心理干预 临床决策支持系统 卷积神经网络 人工智能 重症监护室 机器学习 数据挖掘 决策支持系统 医学 重症监护医学 精神科
作者
Zhen Xu,Jinjin Guo,Lang Qin,Yuntao Xie,Yao Xiao,Xinran Lin,Qiming Li,Xinyang Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3709-3720 被引量:5
标识
DOI:10.1109/jbhi.2024.3379998
摘要

In this study, we present a novel approach for predicting interventions for patients in the intensive care unit using a multivariate time series graph convolutional neural network. Our method addresses two critical challenges: the need for timely and accurate decisions based on changing physiological signals, drug administration information, and static characteristics; and the need for interpretability in the decision-making process. Drawing on real-world ICU records from the MIMIC-III dataset, we demonstrate that our approach significantly improves upon existing machine learning and deep learning methods for predicting two targeted interventions, mechanical ventilation and vasopressors. Our model achieved an accuracy improvement from 81.6% to 91.9% and a F1 score improvement from 0.524 to 0.606 for predicting mechanical ventilation interventions. For predicting vasopressor interventions, our model achieved an accuracy improvement from 76.3% to 82.7% and a F1 score improvement from 0.509 to 0.619. We also assessed the interpretability by performing an adjacency matrix importance analysis, which revealed that our model uses clinically meaningful and appropriate features for prediction. This critical aspect can help clinicians gain insights into the underlying mechanisms of interventions, allowing them to make more informed and precise clinical decisions. Overall, our study represents a significant step forward in the development of decision support systems for ICU patient care, providing a powerful tool for improving clinical outcomes and enhancing patient safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zpp完成签到,获得积分10
刚刚
奔波霸完成签到,获得积分10
刚刚
苏silence发布了新的文献求助10
刚刚
Angelo完成签到 ,获得积分10
刚刚
雷雷完成签到 ,获得积分10
1秒前
@@@完成签到,获得积分20
1秒前
IceShock发布了新的文献求助10
1秒前
赚钱的君完成签到,获得积分10
2秒前
铁柱完成签到,获得积分10
2秒前
2秒前
孟一完成签到,获得积分10
2秒前
LIU完成签到 ,获得积分10
2秒前
2秒前
2秒前
charon完成签到,获得积分10
2秒前
2秒前
Tu完成签到,获得积分10
3秒前
zzZ完成签到,获得积分20
3秒前
晨屿发布了新的文献求助10
3秒前
Kotory完成签到,获得积分10
3秒前
能干的玉兰完成签到,获得积分20
4秒前
花间一壶酒完成签到,获得积分10
4秒前
CodeCraft应助Daisy采纳,获得10
4秒前
二丙发布了新的文献求助10
4秒前
QOP完成签到,获得积分0
5秒前
燧人氏完成签到,获得积分10
5秒前
5秒前
湖畔望月寒完成签到,获得积分20
5秒前
冷如松完成签到,获得积分10
6秒前
6秒前
shan发布了新的文献求助10
6秒前
Faier完成签到,获得积分10
6秒前
6秒前
yiyi完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
韩soso发布了新的文献求助10
7秒前
英姑应助lz123采纳,获得10
7秒前
14完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005