HiCT: Hierarchical Comprehend of Transformer for Weakly Supervised Object Localization

计算机科学 人工智能 判别式 模式识别(心理学) 变压器 卷积神经网络 目标检测 图形 机器学习 计算机视觉 理论计算机科学 电压 量子力学 物理
作者
Wanchun Sun,Xin Feng,Hui Ma,Jingyao Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:1
标识
DOI:10.1109/tim.2023.3261939
摘要

The weakly supervised object localization (WSOL) has always been a very challenging research subject in the field of computer vision, which aims to predict the localization of objects in an image using only an image-level class labeling approach. The traditional convolutional neural network (CNN) based-approaches utilize the local class activation and discrimination for classification guidance, and the biggest drawback of CNN is that it cannot capture the remote feature dependencies between pixels. Recently, the transformer architecture has been deployed in the WSOL, but the transformer cannot well capture local features. To address the above problems, we propose HiCT (Hierarchical comprehend of transformer), a simple and effective visual converter variation method. Moreover, we also propose a discriminative-based attention layer (DAL), which aims to mine the local feature information by utilizing the global token attention graph mechanism. To further improve the coverage of object localization, we introduce the spatial aware digging module (SADM). In addition, a set of complementarity loss calculators to patch hierarchy (CPH) is proposed to improve the sample class aggregation capability of our model. Finally, we conducted experiments on two commonly used datasets of CUB-200-2011 and ILSVRC, so as to verify the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Natsu发布了新的文献求助10
1秒前
1秒前
彭于晏应助肉丸采纳,获得10
2秒前
cr4zy411完成签到,获得积分10
3秒前
3秒前
情怀应助xqq采纳,获得10
3秒前
CodeCraft应助xqq采纳,获得10
3秒前
情怀应助xqq采纳,获得10
3秒前
专一的新之完成签到 ,获得积分10
3秒前
榆钱完成签到,获得积分10
4秒前
yan发布了新的文献求助10
6秒前
打工人不酷完成签到 ,获得积分10
6秒前
8秒前
8秒前
开放的半烟完成签到,获得积分10
9秒前
9秒前
9秒前
Zhang发布了新的文献求助10
10秒前
10秒前
Miracle发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
16秒前
小二郎应助落清欢采纳,获得10
16秒前
NexusExplorer应助肉丸采纳,获得10
16秒前
CipherSage应助刘锋锋采纳,获得10
17秒前
17秒前
华仔应助陈峰琦采纳,获得10
17秒前
tuanheqi应助zzz采纳,获得50
18秒前
Teddyfeeder完成签到,获得积分10
19秒前
酷波er应助玩命的不平采纳,获得10
19秒前
Jasper应助美好外套采纳,获得10
20秒前
韦威风发布了新的文献求助30
20秒前
20秒前
小羊发布了新的文献求助10
22秒前
22秒前
Miracle完成签到,获得积分10
22秒前
123456发布了新的文献求助10
23秒前
求rrr完成签到,获得积分20
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538495
求助须知:如何正确求助?哪些是违规求助? 3116190
关于积分的说明 9324176
捐赠科研通 2814028
什么是DOI,文献DOI怎么找? 1546373
邀请新用户注册赠送积分活动 720513
科研通“疑难数据库(出版商)”最低求助积分说明 712068