Fast Image Segmentation and Animation Generation Algorithm Based on Depth Image Sequence

计算机视觉 人工智能 计算机科学 图像分割 动画 分割 尺度空间分割 马尔可夫随机场 范围分割 基于分割的对象分类 算法 计算机图形学(图像)
作者
Liang Zhi-gan
标识
DOI:10.1109/netcit57419.2022.00150
摘要

In this paper a continuous automatic segmentation method for color sequence slice images of Chinese virtual human is proposed. Its main idea is based on region growing algorithm, and animation is a new algorithm for segmenting moving target images from complex background by using sequence images. Firstly, the animation uses Markov random field (MRF) model and continuoushneprocess to establish a more accurate animation objective function, and uses parallel computing method to calculate the velocity field. Then, based on this, the parallel segmentation of the target animation is realized. Depth image fitting or depth image segmentation is to divide point cloud data with the same geometric features into the same area and perform surface fitting. There are two main methods for deep motion image segmentation: one is based on edge segmentation, and the other is based on region growing. Due to the characteristics of the depth image acquisition method, the point cloud data is often discontinuous and contains more noise. Using the edge based segmentation algorithm, the boundary point segmentation can be effectively realized only when the processed point cloud data has animation continuity and less noise points. In this paper, a method of animation parameter optimization calculation based on depth image sequence is proposed. According to the depth image sequence under different attitudes, the optimization function of animation parameters and attitude parameters is designed, and the deformation results under different attitudes are comprehensively considered. By alternately optimizing the animation parameters and attitude parameters, the animation parameters are output until the objective function converges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助曾经大地采纳,获得10
刚刚
醍醐不醒完成签到 ,获得积分10
刚刚
2秒前
4秒前
4秒前
科研通AI6应助panyubo采纳,获得10
4秒前
悠悠发布了新的文献求助20
5秒前
6秒前
LOTUS发布了新的文献求助10
8秒前
扎根完成签到,获得积分10
8秒前
柏不斜发布了新的文献求助10
9秒前
coollz完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
扎根发布了新的文献求助150
11秒前
乐in林发布了新的文献求助10
11秒前
玩命的小虾米完成签到,获得积分10
12秒前
junlin完成签到,获得积分10
13秒前
所所应助surain采纳,获得10
14秒前
AMM发布了新的文献求助10
14秒前
Tian发布了新的文献求助100
16秒前
16秒前
FashionBoy应助聪明海云采纳,获得10
18秒前
666发布了新的文献求助10
21秒前
TCMning发布了新的文献求助10
22秒前
22秒前
四玖玖完成签到,获得积分10
24秒前
酷波er应助xx采纳,获得10
26秒前
海斯泰因发布了新的文献求助10
27秒前
Daisy发布了新的文献求助10
27秒前
害怕的水之完成签到,获得积分10
28秒前
一生低首向东坡完成签到,获得积分20
28秒前
风吹麦田应助ljn采纳,获得50
28秒前
28秒前
深情的鞯发布了新的文献求助10
29秒前
heaven发布了新的文献求助10
29秒前
雨中小王应助懵懂的寻冬采纳,获得10
29秒前
surain完成签到,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329