Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics

明胶 生物电子学 细菌纤维素 自愈水凝胶 材料科学 氢键 光学透明度 纳米技术 纤维素 透明度(行为) 化学工程 化学 光电子学 生物传感器 高分子化学 分子 有机化学 计算机科学 工程类 计算机安全
作者
Ting Zhou,Zi Qiao,Mei Yang,Kai Wu,Nini Xin,Jiamei Xiao,Xiaoyin Liu,Chengheng Wu,Dan Wei,Jing Sun,Hongsong Fan
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:231: 115288-115288 被引量:17
标识
DOI:10.1016/j.bios.2023.115288
摘要

Bacterial cellulose (BC) with its inherent nanofibrils framework is an attractive building block for the fabrication of sustainable bioelectronics, but there still lacks an effective and green strategy to regulate the hydrogen-bonding topological structure of BC to improve its optical transparency and mechanical stretchability. Herein, we report an ultra-fine nanofibril-reinforced composite hydrogel by utilizing gelatin and glycerol as hydrogen-bonding donor/acceptor to mediate the rearrangement of the hydrogen-bonding topological structure of BC. Attributing to the hydrogen-bonding structural transition, the ultra-fine nanofibrils were extracted from the original BC nanofibrils, which reduced the light scattering and endowed the hydrogel with high transparency. Meanwhile, the extracted nanofibrils were connected with gelatin and glycerol to establish an effective energy dissipation network, leading to an increase in stretchability and toughness of hydrogels. The hydrogel also displayed tissue-adhesiveness and long-lasting water-retaining capacity, which acted as bio-electronic skin to stably acquire the electrophysiological signals and external stimuli even after the hydrogel was exposing to air condition for 30 days. Moreover, the transparent hydrogel could also serve as a smart skin dressing for optical identification of bacterial infection and on-demand antibacterial therapy after combined with phenol red and indocyanine green. This work offers a strategy to regulate the hierarchical structure of natural materials for designing skin-like bioelectronics toward green, low cost, and sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YHX完成签到,获得积分10
3秒前
蒋开耀完成签到,获得积分10
3秒前
深情安青应助破釜沉舟采纳,获得10
3秒前
有有完成签到 ,获得积分10
3秒前
舒心储完成签到,获得积分10
3秒前
缓慢的王完成签到,获得积分10
4秒前
Ampace小老弟完成签到 ,获得积分10
4秒前
Liang完成签到,获得积分10
5秒前
清脆晓曼完成签到,获得积分10
6秒前
蒋开耀发布了新的文献求助10
7秒前
hellozijia完成签到,获得积分10
8秒前
linfordlu完成签到,获得积分0
9秒前
下雨天完成签到,获得积分10
9秒前
闪闪青雪完成签到,获得积分10
10秒前
聪明的宛菡完成签到,获得积分10
11秒前
研友_n0DWDn完成签到,获得积分10
13秒前
genomed应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
genomed应助科研通管家采纳,获得10
13秒前
5km完成签到,获得积分10
13秒前
甘棠完成签到,获得积分10
14秒前
笨笨千亦完成签到 ,获得积分10
14秒前
andrew完成签到,获得积分10
14秒前
甜蜜水蜜桃完成签到 ,获得积分10
15秒前
大豆终结者完成签到,获得积分10
15秒前
程程完成签到,获得积分10
16秒前
16秒前
科研小菜完成签到 ,获得积分10
16秒前
大曼完成签到,获得积分10
16秒前
小盆呐完成签到,获得积分10
17秒前
123关注了科研通微信公众号
19秒前
LFY完成签到 ,获得积分10
19秒前
上官若男应助123采纳,获得10
20秒前
M星人发布了新的文献求助10
22秒前
Liziqi823完成签到,获得积分10
24秒前
神勇千万完成签到,获得积分10
24秒前
汉堡包应助KevinDante采纳,获得30
25秒前
靓丽衫完成签到 ,获得积分10
25秒前
25秒前
labordoc完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008920
求助须知:如何正确求助?哪些是违规求助? 3548597
关于积分的说明 11299259
捐赠科研通 3283208
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886005
科研通“疑难数据库(出版商)”最低求助积分说明 811259