CBW-MSSANet: A CNN Framework With Compact Band Weighting and Multiscale Spatial Attention for Hyperspectral Image Change Detection

像素 高光谱成像 加权 计算机科学 人工智能 空间分析 比例(比率) 遥感 模式识别(心理学) 质心 计算机视觉 图像分辨率 地理 地图学 医学 放射科
作者
Xianfeng Ou,Liangzhen Liu,Bing Tu,Linbo Qing,Guoyun Zhang,Zifei Liang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:9
标识
DOI:10.1109/tgrs.2023.3263563
摘要

Change detection (CD), aims to detect the changing area of the same scene at different times, which is an important application of remote sensing images. As the key data source of CD, hyperspectral image (HSI) is widely used in CD technology because of its rich spectral-spatial information. However, how to mine the multi-level spatial information of dual-temporal hyperspectral images (HSIs) and focus on the features of the pixels to be classified individually remains a problem in the spatial attention mechanism (SAM). To make full use of the spectral-spatial information of HSIs, in this paper we propose a CNN framework with compact band weighting and multi-scale spatial attention (CBW-MSSANet) for HSI pixel-level CD. The main contributions of this article are as follows: 1) a new method of pseudo-label training sample selection based on k-means (KM) centroid distance is designed; 2) apply the compact band weighting (CBW) module to HSI CD to take full advantage of the spectral information of HSIs; 3) a multi-scale spatial attention (MSSA) module is developed for pixel-level CD, which can mine multi-level spatial information and pay more attention to the features of the pixels to be classified, and combine the spatial information of adjacent pixels to make it more conducive to pixel-level CD. Experimental results on four real HSI datasets demonstrated that the performance of MSSA surpasses the classical single-scale SAM, and CBW-MSSANet is superior to some representative CD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
adamchris发布了新的文献求助200
1秒前
约定看星星啊完成签到,获得积分10
1秒前
1秒前
1秒前
笛卡尔发布了新的文献求助10
1秒前
fc小肥杨发布了新的文献求助30
2秒前
2秒前
2秒前
边城小子完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
CC发布了新的文献求助10
6秒前
陈晚拧发布了新的文献求助10
6秒前
sy发布了新的文献求助10
6秒前
hhhh发布了新的文献求助10
6秒前
mayuzumi完成签到,获得积分10
7秒前
8秒前
宗晓曼完成签到 ,获得积分10
8秒前
8秒前
9秒前
科研通AI2S应助1451采纳,获得10
9秒前
9秒前
10秒前
ZHIXIANGWENG发布了新的文献求助10
10秒前
11秒前
11秒前
小可完成签到 ,获得积分10
11秒前
赵雪丞发布了新的文献求助10
11秒前
彭于晏应助小尚要加油采纳,获得10
12秒前
科研通AI5应助CC采纳,获得10
13秒前
汉堡包应助年轻的醉冬采纳,获得10
13秒前
13秒前
ZHIXIANGWENG发布了新的文献求助10
14秒前
科研通AI5应助hhhh采纳,获得10
14秒前
后陡门58完成签到 ,获得积分20
14秒前
Owen应助勤奋桐采纳,获得10
14秒前
ddj发布了新的文献求助10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561233
求助须知:如何正确求助?哪些是违规求助? 3134952
关于积分的说明 9410444
捐赠科研通 2835342
什么是DOI,文献DOI怎么找? 1558422
邀请新用户注册赠送积分活动 728199
科研通“疑难数据库(出版商)”最低求助积分说明 716729