Ultrasonication for preparing high-performance phase change material nano-emulsions: Optimization and characterization

均质机 剪切减薄 剪切速率 材料科学 流变学 乳状液 粒径 牛顿流体 粘度 相对粘度 复合材料 分析化学(期刊) 热力学 色谱法 化学 有机化学 物理 物理化学
作者
Liu Liu,Jianlei Niu,Jian‐Yong Wu
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:380: 121776-121776 被引量:11
标识
DOI:10.1016/j.molliq.2023.121776
摘要

This work was aimed to optimize the formulation of phase change material nano-emulsions by ultrasonic emulsification that has not been investigated systematically. The optimization was performed using response surface methodology on two response parameters, average droplet size and apparent viscosity, and three independent variables including ultrasonic amplitude (X1), treatment time (X2), and surfactant content (X3). The significance of three variables on both droplet size and apparent viscosity followed the order of X3 > X1 > X2. At the optimal variable levels (X1 = 58 %; X2 = 9 min; X3 = 8 wt%), the droplet size of 118.2 nm and apparent viscosity of 7.3 mPa·s were predicated by the regression model and also well verified by experiments. The 25 wt% phase change nano-emulsion formed by ultrasonication exhibited the best emulsion stability and the lowest apparent viscosity compared with those formulated by high-energy rotor-stator homogenizer and low-energy method of phase inversion temperature. In addition, the rheological behavior associated with the average droplet size and the solid/liquid state of phase change material was illustrated numerically for the first time. In general, a threshold of 170–180 nm was found for the transition of liquid-in-water emulsions from a shear-thinning non-Newtonian fluid to a Newtonian fluid in the shear rate range of 0.6–73 s−1. All solid-in-water suspensions showed shear-thinning fluid behavior, though the shear-thinning degree was dramatically reduced to a flow behavior index of about 0.95 as the particle size was below 100 nm. These findings may be useful for designing high-performance phase change material nano-emulsions with long service life, high energy storage capacity, and low pumping power consumption for applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天Q完成签到,获得积分10
刚刚
szj完成签到,获得积分10
刚刚
夏侯夏侯完成签到 ,获得积分10
刚刚
刚刚
大绿豆cc完成签到,获得积分10
1秒前
tian完成签到,获得积分10
1秒前
Zsl121完成签到,获得积分10
1秒前
2秒前
tian发布了新的文献求助10
4秒前
激昂的幻梦完成签到,获得积分10
4秒前
dllz发布了新的文献求助10
5秒前
周香完成签到 ,获得积分10
5秒前
酷酷的店员完成签到,获得积分10
6秒前
超级BoBo完成签到,获得积分10
6秒前
成就乘云发布了新的文献求助10
7秒前
我是老大应助李李李采纳,获得10
8秒前
科研通AI2S应助ProfWang采纳,获得10
8秒前
l璐w璐l完成签到,获得积分10
8秒前
亚丽完成签到 ,获得积分10
9秒前
烟花应助陈__采纳,获得30
10秒前
淡定白易完成签到,获得积分10
11秒前
颜瑞完成签到 ,获得积分10
11秒前
充电宝应助iop采纳,获得10
11秒前
无声瀑布完成签到,获得积分10
11秒前
12秒前
12秒前
Orange应助摸鱼ing采纳,获得10
13秒前
幽默雨完成签到,获得积分10
13秒前
14秒前
xzz发布了新的文献求助20
14秒前
tianqing完成签到,获得积分10
14秒前
积极慕梅应助潘志强采纳,获得10
16秒前
lw发布了新的文献求助10
16秒前
呵呵呵悦发布了新的文献求助10
16秒前
个性的紫菜应助成就乘云采纳,获得20
17秒前
lee完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147019
求助须知:如何正确求助?哪些是违规求助? 2798354
关于积分的说明 7828125
捐赠科研通 2454959
什么是DOI,文献DOI怎么找? 1306544
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565