Refrigeration equipment model construction based in data center cooling station

冷冻机 冷却塔 工程类 制冷 经验模型 能源消耗 人工神经网络 均方误差 工作(物理) 数据中心 水冷 模拟 计算机科学 机械工程 电气工程 统计 数学 人工智能 物理 热力学 操作系统
作者
Hang Yu,Tianyi Zhang,Lei Chen,Wen‐Quan Tao
出处
期刊:International Journal of Green Energy [Taylor & Francis]
卷期号:20 (15): 1741-1749 被引量:4
标识
DOI:10.1080/15435075.2023.2194374
摘要

ABSTRACTABSTRACTThe energy consumption of data centers (DCs) is rising year by year, and cooling station accounts for more than 40% of the total DCs’ energy consumption, which has a huge energy-saving potential. Building models for whole DCs’ cooling station can help predict total power to improve the energy efficiency of the system, before this, establishing a single model for each component is a basic work. This paper mainly studies the chiller and cooling tower models and compares the predictive performance of the empirical model, hybrid model, and neural network model of chillers and cooling towers. Giving the model selection scheme of the chiller and cooling tower for the establishment of the whole system of the refrigeration station. For the chiller model, the Yoshida function model in empirical models has the highest accuracy with a mean square error of 0.0592, followed by the neural network model with a mean square error of 0.2, and the hybrid model has a lower accuracy than the former two models. For the cooling tower model, the empirical models and the neural network model have similar accuracy, and both are higher than the hybrid model.KEYWORDS: Data centercooling towerchillerempirical modelnerual networkhybrid model AcknowledgementsThis work has been supported by the National Natural Science Foundation of China (Grant numbers: 51876161), Key R&D projects in Shaanxi Province (S2021-YF-GXZD-0024), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.51721004). Thanks to Kunfeng Zhao for his valuable comments in the process of drafting and revising the paper.Disclosure statementNo potential conflict of interest was reported by the author(s).NomenclatureCOPCoefficientofPerformanceTwiEvaporatorinletwatertemperature,∘CTciCondenserinletwatertemperature,∘CQrefChillercapacityatfullloadratedreferencevalue,WTwoEvaporatoroutletwatertemperature,∘CPrefChillerinputpoweratfullloadcondition,WPChillerinputpower,WTci_edRatedcondenserinletwatertemperature,∘CTwo_edRatedevaporatoroutletwatertemperature,∘CmcwCondenserwatermassflowrate,kg/smewEvaporatorwatermassflowrate,kg/smcw_edRatedcondenserwatermassflowrate,kg/smew_edRatedevaporatorwatermassflowrate,kg/sAPPTowerapporachtemperature,∘CTrWatertemperaturedecrease,∘CratioWatermassflowtoairmassflowm_airAirmassflowrate,kg/sm,nRegressionparametersai−jiRegressionparametersQCoolingcapacity,WmwaterWatermassflowrate,kg/smairedRatedairmassflowrate,kg/smwateredRatedwatermassflowrate,kg/shEnthalpy,J/kgzElevation,mkwMasstransfercoefficient,kg/(m2s)aAreaperunitvolume,m−1VTotalvolumeoftower,m3m˙aAirmassflowrate,kg/shsSaturatedairenthalpy,J/kgTwTemperature,∘Cm˙wMassflowrateofwater,kg/sCpwSpecificheatofwaterunderconstantpressure,J/(kgK)NMerkelnumbert1Towerinletwatertemperature,∘Ct2Toweroutletwatertemperature,∘CLWatermassflowrate,kg/sGAirmassflowrate,kg/sAdditional informationFundingThe work was supported by the National Natural Science Foundation of China [51876161].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
xiaomei发布了新的文献求助10
1秒前
好好完成签到,获得积分10
2秒前
科研通AI2S应助胡梦园采纳,获得10
2秒前
动漫大师发布了新的文献求助10
3秒前
3秒前
wh完成签到,获得积分10
3秒前
4秒前
顾矜应助第七个星球采纳,获得10
4秒前
朱安南完成签到,获得积分10
4秒前
5秒前
虚幻山菡完成签到 ,获得积分10
5秒前
哈哈哈发布了新的文献求助10
6秒前
小鱼干发布了新的文献求助10
7秒前
朱安南发布了新的文献求助10
8秒前
陶渊明发布了新的文献求助30
8秒前
8秒前
自由山槐发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助直率的花生采纳,获得10
9秒前
lu0000xuan发布了新的文献求助10
10秒前
10秒前
11秒前
CarolineOY完成签到,获得积分10
12秒前
徐徐完成签到,获得积分10
12秒前
12秒前
虚幻山菡关注了科研通微信公众号
12秒前
柚子子子子子子完成签到,获得积分10
13秒前
13秒前
小天完成签到,获得积分10
14秒前
开心友儿完成签到,获得积分10
14秒前
皮念寒发布了新的文献求助30
14秒前
zxh完成签到,获得积分10
15秒前
msy1998发布了新的文献求助10
15秒前
pengpeng酱完成签到,获得积分10
17秒前
17秒前
隐形曼青应助chris采纳,获得10
18秒前
18秒前
香蕉觅云应助我爱学习呢采纳,获得10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427