Computer assisted identification of stress, anxiety, depression (SAD) in students: A state-of-the-art review

焦虑 萧条(经济学) 心理学 心理健康 鉴定(生物学) 压力(语言学) 情感(语言学) 临床心理学 人工智能 计算机科学 心理治疗师 精神科 沟通 生物 植物 哲学 宏观经济学 经济 语言学
作者
Astha Singh,Divya Kumar
出处
期刊:Medical Engineering & Physics [Elsevier BV]
卷期号:110: 103900-103900 被引量:2
标识
DOI:10.1016/j.medengphy.2022.103900
摘要

Stress, depression, and anxiety are a person's physiological states that emerge from various body features such as speech, body language, eye contact, facial expression, etc. Physiological emotion is a part of human life and is associated with psychological activities. Sad emotion is relatable to negative thoughts and recognized in three stages containing stress, anxiety, and depression. These stages of Physiological emotion show various common and distinguished symptoms. The present study explores stress, depression, and anxiety symptoms in student life. The study reviews the psychological features generated through various body parts to identify psychological activities. Environmental factors, including a daily routine, greatly trigger psychological activities. The psychological disorder may affect mental and physical health adversely. The correct recognition of such disorder is expensive and time-consuming as it requires accurate datasets of symptoms. In the present study, an attempt has been made to investigate the effectiveness of computerized automated techniques that include machine learning algorithms for identifying stress, anxiety, and depression mental disorder. The proposed paper reviews the machine learning-based algorithms applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. During the review process, the proposed study found that artificial intelligence and machine learning techniques are well recommended and widely utilized in most of the existing literature for measuring psychological disorders. The various machine learning-based algorithms are applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. There has been continuous monitoring for the body symptoms established in the various existing literature to identify psychological states. The present review reveals the study of excellence and competence of machine learning techniques in detecting psychological disorders' stress, depression, and anxiety parameters. This paper shows a systematic review of some existing computer vision-based models with their merits and demerits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
细腻新烟发布了新的文献求助10
1秒前
bc完成签到,获得积分10
2秒前
2秒前
3秒前
走走完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
AnYijing完成签到,获得积分10
5秒前
5秒前
淡定自中发布了新的文献求助10
6秒前
splaker7发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助自觉大门采纳,获得10
6秒前
SYLH应助简单的安梦采纳,获得10
7秒前
hh发布了新的文献求助10
7秒前
JamesTYD发布了新的文献求助10
7秒前
8秒前
ZZZ完成签到,获得积分10
8秒前
灵巧的书文应助sunc采纳,获得10
10秒前
热心市民小红花应助sunc采纳,获得10
10秒前
pluto应助曾志伟采纳,获得10
10秒前
10秒前
10秒前
杳鸢应助开心牛油果采纳,获得10
10秒前
英姑应助开心牛油果采纳,获得10
10秒前
LIIIIIII发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
迷路以蓝完成签到,获得积分10
13秒前
kai发布了新的文献求助10
13秒前
13秒前
14秒前
苹果摇伽完成签到,获得积分10
14秒前
宓希完成签到,获得积分10
14秒前
CipherSage应助淡定自中采纳,获得10
15秒前
一只香菇发布了新的文献求助10
15秒前
李健的粉丝团团长应助tuya采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951400
求助须知:如何正确求助?哪些是违规求助? 3496764
关于积分的说明 11084465
捐赠科研通 3227180
什么是DOI,文献DOI怎么找? 1784320
邀请新用户注册赠送积分活动 868350
科研通“疑难数据库(出版商)”最低求助积分说明 801110