Computer assisted identification of stress, anxiety, depression (SAD) in students: A state-of-the-art review

焦虑 萧条(经济学) 心理学 心理健康 鉴定(生物学) 压力(语言学) 情感(语言学) 临床心理学 人工智能 计算机科学 心理治疗师 精神科 沟通 生物 植物 哲学 宏观经济学 经济 语言学
作者
Astha Singh,Divya Kumar
出处
期刊:Medical Engineering & Physics [Elsevier]
卷期号:110: 103900-103900 被引量:2
标识
DOI:10.1016/j.medengphy.2022.103900
摘要

Stress, depression, and anxiety are a person's physiological states that emerge from various body features such as speech, body language, eye contact, facial expression, etc. Physiological emotion is a part of human life and is associated with psychological activities. Sad emotion is relatable to negative thoughts and recognized in three stages containing stress, anxiety, and depression. These stages of Physiological emotion show various common and distinguished symptoms. The present study explores stress, depression, and anxiety symptoms in student life. The study reviews the psychological features generated through various body parts to identify psychological activities. Environmental factors, including a daily routine, greatly trigger psychological activities. The psychological disorder may affect mental and physical health adversely. The correct recognition of such disorder is expensive and time-consuming as it requires accurate datasets of symptoms. In the present study, an attempt has been made to investigate the effectiveness of computerized automated techniques that include machine learning algorithms for identifying stress, anxiety, and depression mental disorder. The proposed paper reviews the machine learning-based algorithms applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. During the review process, the proposed study found that artificial intelligence and machine learning techniques are well recommended and widely utilized in most of the existing literature for measuring psychological disorders. The various machine learning-based algorithms are applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. There has been continuous monitoring for the body symptoms established in the various existing literature to identify psychological states. The present review reveals the study of excellence and competence of machine learning techniques in detecting psychological disorders' stress, depression, and anxiety parameters. This paper shows a systematic review of some existing computer vision-based models with their merits and demerits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WZ0904发布了新的文献求助10
3秒前
狂野静曼完成签到 ,获得积分10
4秒前
武映易完成签到 ,获得积分10
6秒前
zzz发布了新的文献求助10
7秒前
8秒前
大蒜味酸奶钊完成签到 ,获得积分10
8秒前
鱼宇纸完成签到 ,获得积分10
8秒前
LEE完成签到,获得积分20
8秒前
8秒前
Ava应助无限的绿真采纳,获得10
10秒前
小马甲应助xiongdi521采纳,获得10
10秒前
科研通AI5应助陶醉觅夏采纳,获得200
13秒前
憨鬼憨切发布了新的文献求助10
13秒前
13秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
15秒前
16秒前
17秒前
hh应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
Eva完成签到,获得积分10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
清爽老九应助科研通管家采纳,获得20
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
greenPASS666发布了新的文献求助10
18秒前
涂欣桐应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
secbox完成签到,获得积分10
19秒前
刘哈哈发布了新的文献求助30
19秒前
xyzdmmm完成签到,获得积分10
20秒前
20秒前
欢呼冰岚发布了新的文献求助30
21秒前
xiongdi521发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849