Computer assisted identification of stress, anxiety, depression (SAD) in students: A state-of-the-art review

焦虑 萧条(经济学) 心理学 心理健康 鉴定(生物学) 压力(语言学) 情感(语言学) 临床心理学 人工智能 计算机科学 心理治疗师 精神科 沟通 生物 植物 哲学 宏观经济学 经济 语言学
作者
Astha Singh,Divya Kumar
出处
期刊:Medical Engineering & Physics [Elsevier]
卷期号:110: 103900-103900 被引量:2
标识
DOI:10.1016/j.medengphy.2022.103900
摘要

Stress, depression, and anxiety are a person's physiological states that emerge from various body features such as speech, body language, eye contact, facial expression, etc. Physiological emotion is a part of human life and is associated with psychological activities. Sad emotion is relatable to negative thoughts and recognized in three stages containing stress, anxiety, and depression. These stages of Physiological emotion show various common and distinguished symptoms. The present study explores stress, depression, and anxiety symptoms in student life. The study reviews the psychological features generated through various body parts to identify psychological activities. Environmental factors, including a daily routine, greatly trigger psychological activities. The psychological disorder may affect mental and physical health adversely. The correct recognition of such disorder is expensive and time-consuming as it requires accurate datasets of symptoms. In the present study, an attempt has been made to investigate the effectiveness of computerized automated techniques that include machine learning algorithms for identifying stress, anxiety, and depression mental disorder. The proposed paper reviews the machine learning-based algorithms applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. During the review process, the proposed study found that artificial intelligence and machine learning techniques are well recommended and widely utilized in most of the existing literature for measuring psychological disorders. The various machine learning-based algorithms are applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. There has been continuous monitoring for the body symptoms established in the various existing literature to identify psychological states. The present review reveals the study of excellence and competence of machine learning techniques in detecting psychological disorders' stress, depression, and anxiety parameters. This paper shows a systematic review of some existing computer vision-based models with their merits and demerits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
业余专家完成签到,获得积分10
1秒前
1秒前
book完成签到,获得积分20
4秒前
~~完成签到,获得积分10
5秒前
5秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得30
8秒前
9秒前
吴彦祖发布了新的文献求助10
10秒前
大气元彤完成签到,获得积分10
11秒前
lun关注了科研通微信公众号
11秒前
Alive发布了新的文献求助10
13秒前
领导范儿应助辛勤绮露采纳,获得10
14秒前
天天快乐应助唐喻菲采纳,获得10
14秒前
海蓝完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
17秒前
18秒前
melisa完成签到,获得积分10
18秒前
NJY发布了新的文献求助10
19秒前
Archer发布了新的文献求助10
19秒前
FashionBoy应助ww采纳,获得20
20秒前
yvonne3399应助Blade采纳,获得10
21秒前
WZH完成签到,获得积分10
21秒前
FashionBoy应助keke采纳,获得10
22秒前
22秒前
bkagyin应助阿宝采纳,获得10
22秒前
dlr发布了新的文献求助10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310676
求助须知:如何正确求助?哪些是违规求助? 2943441
关于积分的说明 8515247
捐赠科研通 2618790
什么是DOI,文献DOI怎么找? 1431435
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649643