Computer assisted identification of stress, anxiety, depression (SAD) in students: A state-of-the-art review

焦虑 萧条(经济学) 心理学 心理健康 鉴定(生物学) 压力(语言学) 情感(语言学) 临床心理学 人工智能 计算机科学 心理治疗师 精神科 沟通 生物 植物 哲学 宏观经济学 经济 语言学
作者
Astha Singh,Divya Kumar
出处
期刊:Medical Engineering & Physics [Elsevier BV]
卷期号:110: 103900-103900 被引量:2
标识
DOI:10.1016/j.medengphy.2022.103900
摘要

Stress, depression, and anxiety are a person's physiological states that emerge from various body features such as speech, body language, eye contact, facial expression, etc. Physiological emotion is a part of human life and is associated with psychological activities. Sad emotion is relatable to negative thoughts and recognized in three stages containing stress, anxiety, and depression. These stages of Physiological emotion show various common and distinguished symptoms. The present study explores stress, depression, and anxiety symptoms in student life. The study reviews the psychological features generated through various body parts to identify psychological activities. Environmental factors, including a daily routine, greatly trigger psychological activities. The psychological disorder may affect mental and physical health adversely. The correct recognition of such disorder is expensive and time-consuming as it requires accurate datasets of symptoms. In the present study, an attempt has been made to investigate the effectiveness of computerized automated techniques that include machine learning algorithms for identifying stress, anxiety, and depression mental disorder. The proposed paper reviews the machine learning-based algorithms applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. During the review process, the proposed study found that artificial intelligence and machine learning techniques are well recommended and widely utilized in most of the existing literature for measuring psychological disorders. The various machine learning-based algorithms are applied over datasets containing questionnaires, audio, video, etc., to recognize sad details. There has been continuous monitoring for the body symptoms established in the various existing literature to identify psychological states. The present review reveals the study of excellence and competence of machine learning techniques in detecting psychological disorders' stress, depression, and anxiety parameters. This paper shows a systematic review of some existing computer vision-based models with their merits and demerits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助冉冉采纳,获得10
刚刚
zz发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
4秒前
5秒前
Cara完成签到,获得积分20
6秒前
7秒前
惊鸿客发布了新的文献求助10
7秒前
8秒前
577发布了新的文献求助10
9秒前
10秒前
飘逸访蕊发布了新的文献求助10
11秒前
冰雪物语发布了新的文献求助10
12秒前
13秒前
14秒前
冉冉完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
velo应助喽喽采纳,获得10
18秒前
科研通AI5应助喽喽采纳,获得30
18秒前
隐形曼青应助喽喽采纳,获得10
18秒前
好好完成签到,获得积分10
18秒前
研友_VZG7GZ应助喽喽采纳,获得10
18秒前
科研通AI5应助喽喽采纳,获得30
18秒前
天天快乐应助喽喽采纳,获得30
18秒前
星辰大海应助喽喽采纳,获得20
18秒前
在水一方应助喽喽采纳,获得30
18秒前
Lucas应助喽喽采纳,获得30
18秒前
可爱的函函应助喽喽采纳,获得10
18秒前
冉冉发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
周周完成签到 ,获得积分10
21秒前
好好发布了新的文献求助10
22秒前
热心冷亦发布了新的文献求助30
22秒前
23秒前
瑞仔发布了新的文献求助10
24秒前
啊凡完成签到 ,获得积分10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4208780
求助须知:如何正确求助?哪些是违规求助? 3742947
关于积分的说明 11781863
捐赠科研通 3412785
什么是DOI,文献DOI怎么找? 1872818
邀请新用户注册赠送积分活动 927420
科研通“疑难数据库(出版商)”最低求助积分说明 837073