核密度估计
密度估算
多元核密度估计
条件概率分布
人工智能
非参数统计
核(代数)
变核密度估计
贝叶斯概率
计算机科学
数学
高斯分布
模式识别(心理学)
贝叶斯平均
机器学习
贝叶斯推理
变阶贝叶斯网络
核方法
统计
支持向量机
物理
组合数学
量子力学
估计员
作者
George H. John,Pat Langley
出处
期刊:Cornell University - arXiv
日期:2013-01-01
被引量:113
标识
DOI:10.48550/arxiv.1302.4964
摘要
When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon the normality assumption and instead use statistical methods for nonparametric density estimation. For a naive Bayesian classifier, we present experimental results on a variety of natural and artificial domains, comparing two methods of density estimation: assuming normality and modeling each conditional distribution with a single Gaussian; and using nonparametric kernel density estimation. We observe large reductions in error on several natural and artificial data sets, which suggests that kernel estimation is a useful tool for learning Bayesian models.
科研通智能强力驱动
Strongly Powered by AbleSci AI