One Transformer Can Understand Both 2D & 3D Molecular Data

计算机科学 变压器 杠杆(统计) 编码 人工智能 化学空间 机器学习 自然语言处理 药物发现 电压 电气工程 生物信息学 化学 工程类 基因 生物 生物化学
作者
Shengjie Luo,Tianlang Chen,Yixian Xu,Shuxin Zheng,Бо Лю,Liwei Wang,Di He
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2210.01765
摘要

Unlike vision and language data which usually has a unique format, molecules can naturally be characterized using different chemical formulations. One can view a molecule as a 2D graph or define it as a collection of atoms located in a 3D space. For molecular representation learning, most previous works designed neural networks only for a particular data format, making the learned models likely to fail for other data formats. We believe a general-purpose neural network model for chemistry should be able to handle molecular tasks across data modalities. To achieve this goal, in this work, we develop a novel Transformer-based Molecular model called Transformer-M, which can take molecular data of 2D or 3D formats as input and generate meaningful semantic representations. Using the standard Transformer as the backbone architecture, Transformer-M develops two separated channels to encode 2D and 3D structural information and incorporate them with the atom features in the network modules. When the input data is in a particular format, the corresponding channel will be activated, and the other will be disabled. By training on 2D and 3D molecular data with properly designed supervised signals, Transformer-M automatically learns to leverage knowledge from different data modalities and correctly capture the representations. We conducted extensive experiments for Transformer-M. All empirical results show that Transformer-M can simultaneously achieve strong performance on 2D and 3D tasks, suggesting its broad applicability. The code and models will be made publicly available at https://github.com/lsj2408/Transformer-M.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助LB采纳,获得10
刚刚
刚刚
qu完成签到,获得积分10
2秒前
2秒前
wanna发布了新的文献求助10
2秒前
yan123完成签到,获得积分10
2秒前
科研通AI6应助liaotao采纳,获得10
3秒前
赵一发布了新的文献求助10
4秒前
上官小怡发布了新的文献求助10
4秒前
6秒前
桐桐应助qu采纳,获得10
7秒前
悦耳难摧发布了新的文献求助10
7秒前
7秒前
莫莫完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
等风等你完成签到,获得积分10
9秒前
无奈青旋完成签到 ,获得积分10
9秒前
科研通AI2S应助dxd500874采纳,获得10
10秒前
silong发布了新的文献求助10
12秒前
13秒前
852应助阳光电脑采纳,获得10
13秒前
陈cxz完成签到 ,获得积分10
13秒前
哒哒哒完成签到,获得积分10
14秒前
14秒前
wzx完成签到,获得积分10
15秒前
杆儿完成签到,获得积分10
17秒前
田様应助张豪英采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
ne完成签到 ,获得积分10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得20
19秒前
sherry完成签到 ,获得积分10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得50
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
彭于晏应助少年采纳,获得30
19秒前
所所应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416912
求助须知:如何正确求助?哪些是违规求助? 4532992
关于积分的说明 14137590
捐赠科研通 4449022
什么是DOI,文献DOI怎么找? 2440553
邀请新用户注册赠送积分活动 1432369
关于科研通互助平台的介绍 1409818