One Transformer Can Understand Both 2D & 3D Molecular Data

计算机科学 变压器 杠杆(统计) 编码 人工智能 化学空间 机器学习 自然语言处理 药物发现 电压 电气工程 生物信息学 化学 工程类 基因 生物 生物化学
作者
Shengjie Luo,Tianlang Chen,Yixian Xu,Shuxin Zheng,Бо Лю,Liwei Wang,Di He
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2210.01765
摘要

Unlike vision and language data which usually has a unique format, molecules can naturally be characterized using different chemical formulations. One can view a molecule as a 2D graph or define it as a collection of atoms located in a 3D space. For molecular representation learning, most previous works designed neural networks only for a particular data format, making the learned models likely to fail for other data formats. We believe a general-purpose neural network model for chemistry should be able to handle molecular tasks across data modalities. To achieve this goal, in this work, we develop a novel Transformer-based Molecular model called Transformer-M, which can take molecular data of 2D or 3D formats as input and generate meaningful semantic representations. Using the standard Transformer as the backbone architecture, Transformer-M develops two separated channels to encode 2D and 3D structural information and incorporate them with the atom features in the network modules. When the input data is in a particular format, the corresponding channel will be activated, and the other will be disabled. By training on 2D and 3D molecular data with properly designed supervised signals, Transformer-M automatically learns to leverage knowledge from different data modalities and correctly capture the representations. We conducted extensive experiments for Transformer-M. All empirical results show that Transformer-M can simultaneously achieve strong performance on 2D and 3D tasks, suggesting its broad applicability. The code and models will be made publicly available at https://github.com/lsj2408/Transformer-M.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助崔艺笛采纳,获得10
刚刚
CM发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
汉堡包应助愤怒的小鸽子采纳,获得10
5秒前
lll发布了新的文献求助10
5秒前
张浩毅发布了新的文献求助10
6秒前
Connie完成签到,获得积分10
7秒前
在水一方应助我会好好的采纳,获得10
7秒前
111完成签到,获得积分10
8秒前
8秒前
Lucas应助邢寻冬采纳,获得10
9秒前
sadascaqwqw发布了新的文献求助10
10秒前
10秒前
11秒前
乐观的涵菱完成签到,获得积分10
11秒前
12秒前
12秒前
SWL发布了新的文献求助10
13秒前
大个应助CC采纳,获得10
13秒前
无花果应助JianmaoChen采纳,获得10
14秒前
小鱼仔仔发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
香蕉觅云应助EddieDream采纳,获得10
16秒前
孟冬完成签到 ,获得积分20
16秒前
17秒前
17秒前
廖L_发布了新的文献求助10
19秒前
lyg完成签到,获得积分10
19秒前
Tara完成签到,获得积分20
19秒前
hh77发布了新的文献求助20
19秒前
21秒前
糊涂的含卉完成签到,获得积分10
22秒前
22秒前
研友_8RyzBZ发布了新的文献求助10
24秒前
没有昵称发布了新的文献求助10
25秒前
夏艳青发布了新的文献求助10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959091
求助须知:如何正确求助?哪些是违规求助? 3505434
关于积分的说明 11123675
捐赠科研通 3237077
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821