One Transformer Can Understand Both 2D & 3D Molecular Data

计算机科学 变压器 杠杆(统计) 编码 人工智能 化学空间 机器学习 自然语言处理 药物发现 电压 电气工程 生物信息学 化学 工程类 基因 生物 生物化学
作者
Shengjie Luo,Tianlang Chen,Yixian Xu,Shuxin Zheng,Tie‐Yan Liu,Liwei Wang,Di He
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2210.01765
摘要

Unlike vision and language data which usually has a unique format, molecules can naturally be characterized using different chemical formulations. One can view a molecule as a 2D graph or define it as a collection of atoms located in a 3D space. For molecular representation learning, most previous works designed neural networks only for a particular data format, making the learned models likely to fail for other data formats. We believe a general-purpose neural network model for chemistry should be able to handle molecular tasks across data modalities. To achieve this goal, in this work, we develop a novel Transformer-based Molecular model called Transformer-M, which can take molecular data of 2D or 3D formats as input and generate meaningful semantic representations. Using the standard Transformer as the backbone architecture, Transformer-M develops two separated channels to encode 2D and 3D structural information and incorporate them with the atom features in the network modules. When the input data is in a particular format, the corresponding channel will be activated, and the other will be disabled. By training on 2D and 3D molecular data with properly designed supervised signals, Transformer-M automatically learns to leverage knowledge from different data modalities and correctly capture the representations. We conducted extensive experiments for Transformer-M. All empirical results show that Transformer-M can simultaneously achieve strong performance on 2D and 3D tasks, suggesting its broad applicability. The code and models will be made publicly available at https://github.com/lsj2408/Transformer-M.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
刚刚
lyf发布了新的文献求助10
刚刚
刚刚
SciGPT应助科研通管家采纳,获得30
刚刚
情怀应助科研通管家采纳,获得10
刚刚
bluesky应助科研通管家采纳,获得10
刚刚
asdfzxcv应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得30
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
老实千雁应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
asdfzxcv应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
大个应助hd采纳,获得10
2秒前
2秒前
桐桐应助林布林采纳,获得10
4秒前
lygdgq完成签到,获得积分10
4秒前
4秒前
华仔应助yixiaolou采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
刻苦的冬易完成签到 ,获得积分10
5秒前
5秒前
王煜发布了新的文献求助30
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663371
求助须知:如何正确求助?哪些是违规求助? 4849055
关于积分的说明 15103646
捐赠科研通 4821662
什么是DOI,文献DOI怎么找? 2580844
邀请新用户注册赠送积分活动 1535043
关于科研通互助平台的介绍 1493426