A Nomogram for Optimizing Sarcopenia Screening in Community-dwelling Older Adults: AB3C Model

列线图 肌萎缩 医学 接收机工作特性 逻辑回归 曲线下面积 多元分析 体质指数 单变量 多元统计 物理疗法 老年学 内科学 统计 数学
作者
Shuai-Wen Huang,Hong Long,Zhong‐Min Mao,Xing Xiao,Ailin Chen,Xin Liao,Mei Wang,Qiong Zhang,Hong Ye,Hong-Lian Zhou
出处
期刊:Journal of the American Medical Directors Association [Elsevier BV]
卷期号:24 (4): 497-503 被引量:2
标识
DOI:10.1016/j.jamda.2023.02.001
摘要

Objectives Sarcopenia is associated with significantly higher mortality risk, and earlier detection of sarcopenia has remarkable public health benefits. However, the model that predicts sarcopenia in the community has yet to be well identified. The study aimed to develop a nomogram for predicting the risk of sarcopenia and compare the performance with 3 sarcopenia screen models in community-dwelling older adults in China. Design Cross-sectional study. Setting and Participants A total of 966 community-dwelling older adults. Methods A total of 966 community-dwelling older adults were enrolled in the study, with 678 participants grouped into the Training Set and 288 participants grouped into the Validation Set according to a 7:3 randomization. Predictors were identified in the Training Set by univariate and multivariate logistic regression and then combined into a nomogram to predict the risk of sarcopenia. The performance of this nomogram was assessed by calibration, discrimination, and clinical utility. Results Age, body mass index, calf circumference, congestive heart failure, and chronic obstructive pulmonary disease were demonstrated to be predictors for sarcopenia. The nomogram (named as AB3C model) that was constructed based on these predictors showed excellent calibration and discrimination in the Training Set with an area under the receiver operating characteristic curve (AUC) of 0.930. The nomogram also showed perfect calibration and discrimination in the Validation Set with an AUC of 0.897. The clinical utility of the nomogram was supported by decision curve analysis. Comparing the performance with 3 sarcopenia screen models (SARC-F, Ishii, and Calf circumference), the AB3C model outperformed the other models regarding sensitivity and AUC. Conclusions and Implications AB3C model, an easy-to-apply and cost-effective nomogram, was developed to predict the risk of sarcopenia, which may contribute to optimizing sarcopenia screening in community settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐小哼完成签到,获得积分10
1秒前
somajason完成签到,获得积分10
1秒前
1秒前
李昆朋发布了新的文献求助10
2秒前
yx发布了新的文献求助10
3秒前
3秒前
领导范儿应助探索采纳,获得10
3秒前
hs201111发布了新的文献求助10
3秒前
魔幻的依柔完成签到,获得积分10
3秒前
煜钧发布了新的文献求助30
3秒前
swing完成签到,获得积分10
3秒前
素直完成签到,获得积分10
3秒前
典雅碧空应助徐小哼采纳,获得10
5秒前
欧尼完成签到,获得积分10
5秒前
henry发布了新的文献求助10
5秒前
孤独的雄鹰完成签到,获得积分10
6秒前
NexusExplorer应助daidaimumu采纳,获得10
6秒前
yc完成签到,获得积分10
7秒前
totoro完成签到,获得积分10
7秒前
7秒前
Younglee完成签到,获得积分10
7秒前
兰兰完成签到,获得积分10
8秒前
8秒前
命运的X号完成签到,获得积分20
8秒前
CyrusSo524应助尊敬的扬采纳,获得10
8秒前
8秒前
Robert完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
LS发布了新的文献求助10
10秒前
萌兰完成签到,获得积分10
11秒前
所所应助李昆朋采纳,获得10
11秒前
koukousang完成签到,获得积分10
11秒前
无昵称发布了新的文献求助10
12秒前
12秒前
zzs发布了新的文献求助10
12秒前
淡然的铭发布了新的文献求助10
12秒前
米奇发布了新的文献求助10
12秒前
Akim应助纳纳椰采纳,获得10
12秒前
hs201111完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969322
求助须知:如何正确求助?哪些是违规求助? 3514152
关于积分的说明 11172188
捐赠科研通 3249407
什么是DOI,文献DOI怎么找? 1794832
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804781