A Nomogram for Optimizing Sarcopenia Screening in Community-dwelling Older Adults: AB3C Model

列线图 肌萎缩 医学 接收机工作特性 逻辑回归 曲线下面积 多元分析 体质指数 单变量 多元统计 物理疗法 老年学 内科学 统计 数学
作者
Shuai-Wen Huang,Hong Long,Zhong‐Min Mao,Xing Xiao,Ailin Chen,Xin Liao,Mei Wang,Qiong Zhang,Hong Ye,Hong-Lian Zhou
出处
期刊:Journal of the American Medical Directors Association [Elsevier BV]
卷期号:24 (4): 497-503 被引量:2
标识
DOI:10.1016/j.jamda.2023.02.001
摘要

Objectives Sarcopenia is associated with significantly higher mortality risk, and earlier detection of sarcopenia has remarkable public health benefits. However, the model that predicts sarcopenia in the community has yet to be well identified. The study aimed to develop a nomogram for predicting the risk of sarcopenia and compare the performance with 3 sarcopenia screen models in community-dwelling older adults in China. Design Cross-sectional study. Setting and Participants A total of 966 community-dwelling older adults. Methods A total of 966 community-dwelling older adults were enrolled in the study, with 678 participants grouped into the Training Set and 288 participants grouped into the Validation Set according to a 7:3 randomization. Predictors were identified in the Training Set by univariate and multivariate logistic regression and then combined into a nomogram to predict the risk of sarcopenia. The performance of this nomogram was assessed by calibration, discrimination, and clinical utility. Results Age, body mass index, calf circumference, congestive heart failure, and chronic obstructive pulmonary disease were demonstrated to be predictors for sarcopenia. The nomogram (named as AB3C model) that was constructed based on these predictors showed excellent calibration and discrimination in the Training Set with an area under the receiver operating characteristic curve (AUC) of 0.930. The nomogram also showed perfect calibration and discrimination in the Validation Set with an AUC of 0.897. The clinical utility of the nomogram was supported by decision curve analysis. Comparing the performance with 3 sarcopenia screen models (SARC-F, Ishii, and Calf circumference), the AB3C model outperformed the other models regarding sensitivity and AUC. Conclusions and Implications AB3C model, an easy-to-apply and cost-effective nomogram, was developed to predict the risk of sarcopenia, which may contribute to optimizing sarcopenia screening in community settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
贪玩半仙完成签到 ,获得积分10
3秒前
燕小丙完成签到,获得积分10
5秒前
牛无施发布了新的文献求助10
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
lilili应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
9秒前
9秒前
zsp完成签到,获得积分10
12秒前
从容荠发布了新的文献求助10
14秒前
君君发布了新的文献求助10
14秒前
LL完成签到,获得积分10
15秒前
15秒前
俊秀的芫发布了新的文献求助10
18秒前
浮游应助Gaowenjie采纳,获得10
20秒前
21秒前
21秒前
22秒前
23秒前
可可果完成签到,获得积分10
23秒前
Stella发布了新的文献求助10
26秒前
许平平发布了新的文献求助10
26秒前
自然馈赠发布了新的文献求助10
27秒前
纯真的金针菇完成签到,获得积分10
27秒前
Eyrie2001发布了新的文献求助30
28秒前
南歌子完成签到 ,获得积分10
28秒前
木子完成签到,获得积分10
29秒前
Stella完成签到,获得积分10
31秒前
陈丽敏关注了科研通微信公众号
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069715
求助须知:如何正确求助?哪些是违规求助? 4290967
关于积分的说明 13369157
捐赠科研通 4111230
什么是DOI,文献DOI怎么找? 2251352
邀请新用户注册赠送积分活动 1256540
关于科研通互助平台的介绍 1189031