秀丽隐杆线虫
生殖系
毒性
细胞生物学
化学
成纤维细胞生长因子
RNA干扰
跨代表观遗传学
受体
生物
遗传学
生物化学
后代
基因
有机化学
核糖核酸
怀孕
作者
Xin Hua,Chang Cao,Le Zhang,Dayong Wang
标识
DOI:10.1016/j.jhazmat.2023.131174
摘要
Nanoplastics in the environment could cause the ecological and health risks. Recently, the transgenerational toxicity of nanoplastic has been observed in different animal models. In this study, using Caenorhabditis elegans as an animal model, we aimed to examine the role of alteration in germline fibroblast growth factor (FGF) signal in mediating the transgenerational toxicity of polystyrene nanoparticle (PS-NP). Exposure to 1–100 μg/L PS-NP (20 nm) induced transgenerational increase in expressions of germline FGF ligand/EGL-17 and LRP-1 governing FGF secretion. Germline RNAi of egl-17 and lrp-1 resulted in resistance to transgenerational PS-NP toxicity, indicating the requirement of FGF ligand activation and secretion in formation of transgenerational PS-NP toxicity. Germline overexpression of EGL-17 increased expression of FGF receptor/EGL-15 in the offspring, and RNAi of egl-15 at F1 generation (F1-G) inhibited transgenerational toxicity of PS-NP exposed animals overexpressing germline EGL-17. EGL-15 functions in both the intestine and the neurons to control transgenerational PS-NP toxicity. Intestinal EGL-15 acted upstream of DAF-16 and BAR-1, and neuronal EGL-15 functioned upstream of MPK-1 to control PS-NP toxicity. Our results suggested the important role of activation in germline FGF signal in mediating the induction of transgenerational toxicity in organisms exposed to nanoplastics in the range of μg/L.
科研通智能强力驱动
Strongly Powered by AbleSci AI