Inferior Alveolar Canal Automatic Detection with Deep Learning CNNs on CBCTs: Development of a Novel Model and Release of Open-Source Dataset and Algorithm

卷积神经网络 人工智能 计算机科学 注释 掷骰子 深度学习 分割 模式识别(心理学) 机器学习 数学 几何学
作者
Mattia Di Bartolomeo,Arrigo Pellacani,Federico Bolelli,Marco Cipriano,Luca Lumetti,Sara Negrello,Stefano Allegretti,Paolo Minafra,Federico Pollastri,Riccardo Nocini,Giacomo Colletti,Luigi Chiarini,Costantino Grana,Alexandre Anesi
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (5): 3271-3271 被引量:7
标识
DOI:10.3390/app13053271
摘要

Introduction: The need of accurate three-dimensional data of anatomical structures is increasing in the surgical field. The development of convolutional neural networks (CNNs) has been helping to fill this gap by trying to provide efficient tools to clinicians. Nonetheless, the lack of a fully accessible datasets and open-source algorithms is slowing the improvements in this field. In this paper, we focus on the fully automatic segmentation of the Inferior Alveolar Canal (IAC), which is of immense interest in the dental and maxillo-facial surgeries. Conventionally, only a bidimensional annotation of the IAC is used in common clinical practice. A reliable convolutional neural network (CNNs) might be timesaving in daily practice and improve the quality of assistance. Materials and methods: Cone Beam Computed Tomography (CBCT) volumes obtained from a single radiological center using the same machine were gathered and annotated. The course of the IAC was annotated on the CBCT volumes. A secondary dataset with sparse annotations and a primary dataset with both dense and sparse annotations were generated. Three separate experiments were conducted in order to evaluate the CNN. The IoU and Dice scores of every experiment were recorded as the primary endpoint, while the time needed to achieve the annotation was assessed as the secondary end-point. Results: A total of 347 CBCT volumes were collected, then divided into primary and secondary datasets. Among the three experiments, an IoU score of 0.64 and a Dice score of 0.79 were obtained thanks to the pre-training of the CNN on the secondary dataset and the creation of a novel deep label propagation model, followed by proper training on the primary dataset. To the best of our knowledge, these results are the best ever published in the segmentation of the IAC. The datasets is publicly available and algorithm is published as open-source software. On average, the CNN could produce a 3D annotation of the IAC in 6.33 s, compared to 87.3 s needed by the radiology technician to produce a bidimensional annotation. Conclusions: To resume, the following achievements have been reached. A new state of the art in terms of Dice score was achieved, overcoming the threshold commonly considered of 0.75 for the use in clinical practice. The CNN could fully automatically produce accurate three-dimensional segmentation of the IAC in a rapid setting, compared to the bidimensional annotations commonly used in the clinical practice and generated in a time-consuming manner. We introduced our innovative deep label propagation method to optimize the performance of the CNN in the segmentation of the IAC. For the first time in this field, the datasets and the source codes used were publicly released, granting reproducibility of the experiments and helping in the improvement of IAC segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
kanong完成签到,获得积分0
6秒前
Joy完成签到,获得积分10
7秒前
9秒前
羽冰酒完成签到 ,获得积分10
9秒前
123完成签到 ,获得积分10
9秒前
大个应助阿萨卡先生采纳,获得10
12秒前
Oliver完成签到 ,获得积分10
15秒前
风趣朝雪完成签到,获得积分10
18秒前
dlzheng完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
LY完成签到 ,获得积分10
23秒前
微笑高山完成签到 ,获得积分10
25秒前
kk完成签到,获得积分10
26秒前
Liii完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
cathyfly1006发布了新的文献求助10
28秒前
WWW完成签到,获得积分10
29秒前
含糊的慕凝完成签到 ,获得积分10
29秒前
Joy完成签到,获得积分10
33秒前
Akim应助莨菪采纳,获得10
33秒前
MM完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
liu95完成签到 ,获得积分10
35秒前
吉吉完成签到,获得积分10
38秒前
44秒前
凡凡完成签到,获得积分10
45秒前
cathyfly1006完成签到,获得积分10
49秒前
沙脑完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
54秒前
量子星尘发布了新的文献求助10
55秒前
大熊完成签到 ,获得积分10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
zxdzaz完成签到 ,获得积分10
1分钟前
victory_liu完成签到,获得积分10
1分钟前
沭阳检验医师完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715459
求助须知:如何正确求助?哪些是违规求助? 5234383
关于积分的说明 15274394
捐赠科研通 4866277
什么是DOI,文献DOI怎么找? 2612877
邀请新用户注册赠送积分活动 1563033
关于科研通互助平台的介绍 1520447