清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Inferior Alveolar Canal Automatic Detection with Deep Learning CNNs on CBCTs: Development of a Novel Model and Release of Open-Source Dataset and Algorithm

卷积神经网络 人工智能 计算机科学 注释 掷骰子 深度学习 分割 模式识别(心理学) 机器学习 数学 几何学
作者
Mattia Di Bartolomeo,Arrigo Pellacani,Federico Bolelli,Marco Cipriano,Luca Lumetti,Sara Negrello,Stefano Allegretti,Paolo Minafra,Federico Pollastri,Riccardo Nocini,Giacomo Colletti,Luigi Chiarini,Costantino Grana,Alexandre Anesi
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (5): 3271-3271 被引量:7
标识
DOI:10.3390/app13053271
摘要

Introduction: The need of accurate three-dimensional data of anatomical structures is increasing in the surgical field. The development of convolutional neural networks (CNNs) has been helping to fill this gap by trying to provide efficient tools to clinicians. Nonetheless, the lack of a fully accessible datasets and open-source algorithms is slowing the improvements in this field. In this paper, we focus on the fully automatic segmentation of the Inferior Alveolar Canal (IAC), which is of immense interest in the dental and maxillo-facial surgeries. Conventionally, only a bidimensional annotation of the IAC is used in common clinical practice. A reliable convolutional neural network (CNNs) might be timesaving in daily practice and improve the quality of assistance. Materials and methods: Cone Beam Computed Tomography (CBCT) volumes obtained from a single radiological center using the same machine were gathered and annotated. The course of the IAC was annotated on the CBCT volumes. A secondary dataset with sparse annotations and a primary dataset with both dense and sparse annotations were generated. Three separate experiments were conducted in order to evaluate the CNN. The IoU and Dice scores of every experiment were recorded as the primary endpoint, while the time needed to achieve the annotation was assessed as the secondary end-point. Results: A total of 347 CBCT volumes were collected, then divided into primary and secondary datasets. Among the three experiments, an IoU score of 0.64 and a Dice score of 0.79 were obtained thanks to the pre-training of the CNN on the secondary dataset and the creation of a novel deep label propagation model, followed by proper training on the primary dataset. To the best of our knowledge, these results are the best ever published in the segmentation of the IAC. The datasets is publicly available and algorithm is published as open-source software. On average, the CNN could produce a 3D annotation of the IAC in 6.33 s, compared to 87.3 s needed by the radiology technician to produce a bidimensional annotation. Conclusions: To resume, the following achievements have been reached. A new state of the art in terms of Dice score was achieved, overcoming the threshold commonly considered of 0.75 for the use in clinical practice. The CNN could fully automatically produce accurate three-dimensional segmentation of the IAC in a rapid setting, compared to the bidimensional annotations commonly used in the clinical practice and generated in a time-consuming manner. We introduced our innovative deep label propagation method to optimize the performance of the CNN in the segmentation of the IAC. For the first time in this field, the datasets and the source codes used were publicly released, granting reproducibility of the experiments and helping in the improvement of IAC segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小小虾完成签到 ,获得积分10
11秒前
weiwei完成签到,获得积分10
39秒前
爱思考的小笨笨完成签到,获得积分10
40秒前
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
如歌完成签到,获得积分10
1分钟前
阳光的丹雪完成签到,获得积分10
1分钟前
Criminology34应助Lulu采纳,获得10
1分钟前
1分钟前
多乐多发布了新的文献求助10
1分钟前
情怀应助多乐多采纳,获得10
2分钟前
蝎子莱莱xth完成签到,获得积分10
3分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
crazy完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
h0jian09完成签到,获得积分10
3分钟前
lovelife完成签到,获得积分10
4分钟前
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
魔幻的从丹完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
老石完成签到 ,获得积分10
5分钟前
Jessica应助hu采纳,获得10
5分钟前
6分钟前
6分钟前
雨jia完成签到,获得积分10
6分钟前
大个应助鹏哥爱科研采纳,获得10
6分钟前
6分钟前
6分钟前
George发布了新的文献求助10
6分钟前
自然亦凝完成签到,获得积分10
7分钟前
7分钟前
浑续发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545