Joint Hidden Markov Model for Longitudinal and Time-to-Event Data with Latent Variables

潜变量 计算机科学 潜变量模型 事件(粒子物理) 马尔科夫蒙特卡洛 计量经济学 随机效应模型 统计推断 组分(热力学) 推论 贝叶斯推理 贝叶斯概率 隐马尔可夫模型 数据挖掘 统计 机器学习 人工智能 数学 内科学 物理 热力学 荟萃分析 医学 量子力学
作者
Xiaoxiao Zhou,Kai Kang,Timothy Kwok,Xinyuan Song
出处
期刊:Multivariate Behavioral Research [Informa]
卷期号:57 (2-3): 441-457 被引量:6
标识
DOI:10.1080/00273171.2020.1865864
摘要

This study develops a new joint modeling approach to simultaneously analyze longitudinal and time-to-event data with latent variables. The proposed model consists of three components. The first component is a hidden Markov model for investigating a longitudinal observation process and its underlying transition process as well as their potential risk factors and dynamic heterogeneity. The second component is a factor analysis model for characterizing latent risk factors through multiple observed variables. The third component is a proportional hazards model for examining the effects of observed and latent risk factors on the hazards of interest. A shared random effect is introduced to allow the longitudinal and time-to-event outcomes to be correlated. A Bayesian approach coupled with efficient Markov chain Monte Carlo methods is developed to conduct statistical inference. The performance of the proposed method is evaluated through simulation studies. An application of the proposed model to a general health survey study concerning cognitive impairment and mortality for Chinese elders is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kazuma发布了新的文献求助30
1秒前
斯文败类应助cabbage采纳,获得10
2秒前
2秒前
Qwe发布了新的文献求助10
4秒前
Twonej举报whynot求助涉嫌违规
6秒前
6秒前
7秒前
7秒前
jiali发布了新的文献求助10
7秒前
怦然发布了新的文献求助10
11秒前
qin123发布了新的文献求助10
11秒前
YFW发布了新的文献求助10
11秒前
cw完成签到,获得积分10
11秒前
12秒前
小心心鸭完成签到,获得积分10
14秒前
jiali完成签到,获得积分10
14秒前
CCC完成签到,获得积分10
15秒前
16秒前
16秒前
Tin完成签到 ,获得积分10
17秒前
cabbage发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
YFW完成签到,获得积分20
19秒前
19秒前
19秒前
Twonej应助含糊的靖柏采纳,获得10
20秒前
香芋完成签到,获得积分20
20秒前
21秒前
wangli发布了新的文献求助10
21秒前
prode完成签到 ,获得积分10
22秒前
木子李发布了新的文献求助10
24秒前
cabbage完成签到,获得积分10
25秒前
25秒前
zcy完成签到,获得积分20
25秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
幸福妙柏发布了新的文献求助10
25秒前
李爱国应助整齐的乐驹采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811