清脆的
基因组编辑
Cas9
遗传增强
限制
基因组
计算生物学
基因
生物
遗传学
机械工程
工程类
摘要
Abstract Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated enzyme (Cas) is a naturally occurring genome editing tool adopted from the prokaryotic adaptive immune defense system. Currently, CRISPR/Cas9‐based genome editing has been becoming one of the most promising tools for treating human genetic diseases, including cardiovascular diseases, neuro‐disorders, and cancers. As the quick modification of the CRISPR/Cas9 system, including delivery system, CRISPR/Cas9‐based gene therapy has been extensively studied in preclinic and clinic treatments. CRISPR/Cas genome editing is also a robust tool to create animal genetic models for studying and treating human genetic disorders, particularly diseases associated with point mutations. However, significant challenges also remain before CRISPR/Cas technology can be routinely employed in the clinic for treating different genetic diseases, which include toxicity and immune response of treated cells to CRISPR/Cas component, highly throughput delivery method, and potential off‐target impact. The off‐target effect is one of the major concerns for CRISPR/Cas9 gene therapy, more research should be focused on limiting this impact by designing high specific gRNAs and using high specificity of Cas enzymes. Modifying the CRISPR/Cas9 delivery method not only targets a specific tissue/cell but also potentially limits the off‐target impact.
科研通智能强力驱动
Strongly Powered by AbleSci AI