Sentence representation with manifold learning for biomedical texts

判决 自然语言处理 计算机科学 人工智能 代表(政治) 图形 理论计算机科学 政治 政治学 法学
作者
Di Zhao,Jian Wang,Hongfei Lin,Yonghe Chu,Yan Wang,Yijia Zhang,Zhihao Yang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:218: 106869-106869 被引量:22
标识
DOI:10.1016/j.knosys.2021.106869
摘要

Sentence representation approaches based on deep learning have become a major part of natural language processing, and pretrained sentences have wide applications in biomedical texts. However, the geometric basis of sentence representations has not yet been carefully studied in biomedical texts. In this paper, we focus on exploiting the geometric structure of sentences to improve the biomedical text presentation effect. To mine the geometric structure information from sentence representations, we introduce manifold learning, which brings the similarity of sentences in Euclidean space closer to the sentence semantics, into biomedical sentence representations. First, we use the pretrained sentence representation method to obtain a representation of a biomedical text sentence and then use manifold learning to construct the adjacency graph structure of the sentence representation to characterize the local geometric structure information of the sentence representations, thus revealing the essential laws among the sentences. Through the manifold method, we can describe the potential relations among sentences, thus improving the effect based on downstream biomedical text tasks. Our sentence representation method was evaluated on biomedical text tasks. The experimental results show that our model achieved better results than several normal sentence representation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyan完成签到,获得积分10
1秒前
ABC完成签到,获得积分10
1秒前
鑫鑫完成签到,获得积分10
2秒前
银色星辰完成签到,获得积分10
3秒前
ven完成签到,获得积分10
3秒前
XU2025完成签到 ,获得积分10
4秒前
张玥完成签到,获得积分10
7秒前
西瓜刀完成签到 ,获得积分10
7秒前
FD完成签到,获得积分10
8秒前
qyys完成签到 ,获得积分10
8秒前
科研老兵完成签到,获得积分10
9秒前
ppttyy完成签到 ,获得积分10
9秒前
开朗的乐蕊完成签到,获得积分10
11秒前
wjj119完成签到,获得积分10
11秒前
脑洞疼应助欣喜灵波采纳,获得10
11秒前
赖雅绿完成签到,获得积分10
18秒前
胡图图完成签到,获得积分0
19秒前
鲤鱼完成签到,获得积分10
21秒前
23秒前
24秒前
霍巧凡发布了新的文献求助10
24秒前
红糖小糍粑应助风清扬采纳,获得10
25秒前
Ammon完成签到,获得积分10
25秒前
毛毛完成签到,获得积分10
26秒前
27秒前
POTATO发布了新的文献求助10
27秒前
ho应助GUO采纳,获得10
28秒前
开心向真完成签到,获得积分10
28秒前
xg发布了新的文献求助10
29秒前
康米完成签到,获得积分10
29秒前
木子大少发布了新的文献求助10
30秒前
向上发布了新的文献求助10
32秒前
唯梦完成签到 ,获得积分10
33秒前
niuniu完成签到,获得积分10
33秒前
豆包完成签到,获得积分10
36秒前
小野狼完成签到,获得积分10
37秒前
AKYDXS完成签到,获得积分10
37秒前
沉心望星海完成签到,获得积分10
37秒前
小二郎应助向上采纳,获得10
37秒前
千俞完成签到 ,获得积分10
38秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695