Sentence representation with manifold learning for biomedical texts

判决 自然语言处理 计算机科学 人工智能 代表(政治) 图形 理论计算机科学 政治学 政治 法学
作者
Di Zhao,Jian Wang,Hongfei Lin,Yonghe Chu,Yan Wang,Yijia Zhang,Zhihao Yang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:218: 106869-106869 被引量:22
标识
DOI:10.1016/j.knosys.2021.106869
摘要

Sentence representation approaches based on deep learning have become a major part of natural language processing, and pretrained sentences have wide applications in biomedical texts. However, the geometric basis of sentence representations has not yet been carefully studied in biomedical texts. In this paper, we focus on exploiting the geometric structure of sentences to improve the biomedical text presentation effect. To mine the geometric structure information from sentence representations, we introduce manifold learning, which brings the similarity of sentences in Euclidean space closer to the sentence semantics, into biomedical sentence representations. First, we use the pretrained sentence representation method to obtain a representation of a biomedical text sentence and then use manifold learning to construct the adjacency graph structure of the sentence representation to characterize the local geometric structure information of the sentence representations, thus revealing the essential laws among the sentences. Through the manifold method, we can describe the potential relations among sentences, thus improving the effect based on downstream biomedical text tasks. Our sentence representation method was evaluated on biomedical text tasks. The experimental results show that our model achieved better results than several normal sentence representation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斐嘿嘿发布了新的文献求助10
1秒前
1秒前
3秒前
CipherSage应助呆梨医生采纳,获得10
3秒前
jahcenia发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
orixero应助123采纳,获得10
6秒前
伽拉发布了新的文献求助10
7秒前
7秒前
研友_VZG7GZ应助旅行者采纳,获得10
9秒前
xiaohaitao完成签到,获得积分10
9秒前
脑洞疼应助斐嘿嘿采纳,获得10
9秒前
皓民完成签到,获得积分20
10秒前
charles发布了新的文献求助10
10秒前
11秒前
雪饼发布了新的文献求助10
11秒前
IOoOI完成签到,获得积分10
12秒前
李健的粉丝团团长应助wave采纳,获得10
12秒前
支水云完成签到,获得积分10
13秒前
aby发布了新的文献求助10
14秒前
14秒前
优雅的帽子完成签到 ,获得积分20
15秒前
maox1aoxin应助默默夏烟采纳,获得30
15秒前
鉨汏闫完成签到,获得积分10
16秒前
XZZH完成签到,获得积分10
19秒前
收拾收拾应助依然采纳,获得10
19秒前
123发布了新的文献求助10
19秒前
陈宏伟完成签到,获得积分10
20秒前
轻松的惜芹应助伽拉采纳,获得10
20秒前
aby完成签到,获得积分20
22秒前
健康的怡发布了新的文献求助20
23秒前
25秒前
无私的砖头完成签到 ,获得积分10
28秒前
29秒前
30秒前
32秒前
文二目分完成签到 ,获得积分10
32秒前
李爱国应助面面采纳,获得10
34秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160