Sentence representation with manifold learning for biomedical texts

判决 自然语言处理 计算机科学 人工智能 代表(政治) 图形 理论计算机科学 政治学 政治 法学
作者
Di Zhao,Jian Wang,Hongfei Lin,Yonghe Chu,Yan Wang,Yijia Zhang,Zhihao Yang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:218: 106869-106869 被引量:22
标识
DOI:10.1016/j.knosys.2021.106869
摘要

Sentence representation approaches based on deep learning have become a major part of natural language processing, and pretrained sentences have wide applications in biomedical texts. However, the geometric basis of sentence representations has not yet been carefully studied in biomedical texts. In this paper, we focus on exploiting the geometric structure of sentences to improve the biomedical text presentation effect. To mine the geometric structure information from sentence representations, we introduce manifold learning, which brings the similarity of sentences in Euclidean space closer to the sentence semantics, into biomedical sentence representations. First, we use the pretrained sentence representation method to obtain a representation of a biomedical text sentence and then use manifold learning to construct the adjacency graph structure of the sentence representation to characterize the local geometric structure information of the sentence representations, thus revealing the essential laws among the sentences. Through the manifold method, we can describe the potential relations among sentences, thus improving the effect based on downstream biomedical text tasks. Our sentence representation method was evaluated on biomedical text tasks. The experimental results show that our model achieved better results than several normal sentence representation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kento应助freya采纳,获得100
1秒前
Yeah完成签到,获得积分10
1秒前
zhao完成签到,获得积分10
2秒前
科目三应助潦草采纳,获得10
3秒前
华仔应助好好的i采纳,获得10
4秒前
左悬月发布了新的文献求助10
4秒前
4秒前
善学以致用应助理想三寻采纳,获得10
4秒前
SciGPT应助桑葚啊采纳,获得10
4秒前
Asher完成签到,获得积分10
5秒前
善意小霸王完成签到,获得积分20
5秒前
小憨憨完成签到 ,获得积分10
8秒前
9秒前
bkagyin应助包容的剑采纳,获得10
9秒前
10秒前
morena发布了新的文献求助10
10秒前
HCN完成签到,获得积分10
10秒前
11秒前
8R60d8应助善意小霸王采纳,获得10
11秒前
笑容完成签到,获得积分10
12秒前
12秒前
llllll完成签到 ,获得积分10
12秒前
zhao发布了新的文献求助10
13秒前
13秒前
周粥完成签到,获得积分10
14秒前
阿文发布了新的文献求助10
15秒前
15秒前
NexusExplorer应助rrgogo采纳,获得10
16秒前
小木子发布了新的文献求助10
16秒前
古木完成签到,获得积分10
17秒前
鳗鱼英豪完成签到,获得积分10
18秒前
DongZhikai完成签到,获得积分10
19秒前
顾矜应助内向的水儿采纳,获得10
20秒前
清风明月发布了新的文献求助10
20秒前
Lee2000发布了新的文献求助10
21秒前
leo完成签到,获得积分10
21秒前
WangY1263发布了新的文献求助20
23秒前
24秒前
26秒前
李健的小迷弟应助wu采纳,获得10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146297
求助须知:如何正确求助?哪些是违规求助? 2797687
关于积分的说明 7825144
捐赠科研通 2454059
什么是DOI,文献DOI怎么找? 1305990
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503