控制理论(社会学)
终端滑动模式
有效载荷(计算)
人工神经网络
鲁棒控制
变结构控制
跟踪误差
自适应控制
计算机科学
滑模控制
趋同(经济学)
可逆矩阵
控制工程
非线性系统
工程类
控制(管理)
Lyapunov稳定性
控制系统
李雅普诺夫函数
稳健性(进化)
数学
人工智能
物理
纯数学
化学
电气工程
经济
网络数据包
基因
量子力学
生物化学
经济增长
计算机网络
作者
Duc Thien Tran,Hoai Vu Anh Truong,Kyoung Kwan Ahn
标识
DOI:10.1007/s12541-020-00427-4
摘要
The paper addresses an adaptive robust position control for tracking control of a manipulator under the presence of the uncertainties, such as variant payload, modeling error, friction, and external disturbance. The proposed control uses radial basis function neural networks (RBFNN)s to approximate and cancel the uncertainties. The nonsingular fast terminal sliding mode control (NFTSMC) of the proposed control is developed to guarantees a finite-time convergence and to solve the singular issue of the terminal sliding mode control. Moreover, the learning laws are derived from the Lyapunov approach to ensure the stability and robustness of the whole system. The proposed control is compared with other controllers through both simulations and experiments on a 3-DOF manipulator to exhibit its efficiency with the variant payload and the uncertainties.
科研通智能强力驱动
Strongly Powered by AbleSci AI