Deep Learning-Based Annotation Transfer between Molecular Imaging Modalities: An Automated Workflow for Multimodal Data Integration

质谱成像 计算机科学 工作流程 人工智能 背景(考古学) 模态(人机交互) 模式 深度学习 化学 数字化病理学 模式识别(心理学) 注释 质谱法 数据库 古生物学 社会学 生物 色谱法 社会科学
作者
Alan Race,Daniel Sutton,Grégory Hamm,Gareth Maglennon,Jennifer P. Morton,Nicole Strittmatter,Andrew D. Campbell,Owen J. Sansom,Yinhai Wang,Simon T. Barry,Zoltán Takáts,Richard J. A. Goodwin,Josephine Bunch
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (6): 3061-3071 被引量:32
标识
DOI:10.1021/acs.analchem.0c02726
摘要

An ever-increasing array of imaging technologies are being used in the study of complex biological samples, each of which provides complementary, occasionally overlapping information at different length scales and spatial resolutions. It is important to understand the information provided by one technique in the context of the other to achieve a more holistic overview of such complex samples. One way to achieve this is to use annotations from one modality to investigate additional modalities. For microscopy-based techniques, these annotations could be manually generated using digital pathology software or automatically generated by machine learning (including deep learning) methods. Here, we present a generic method for using annotations from one microscopy modality to extract information from complementary modalities. We also present a fast, general, multimodal registration workflow [evaluated on multiple mass spectrometry imaging (MSI) modalities, matrix-assisted laser desorption/ionization, desorption electrospray ionization, and rapid evaporative ionization mass spectrometry] for automatic alignment of complex data sets, demonstrating an order of magnitude speed-up compared to previously published work. To demonstrate the power of the annotation transfer and multimodal registration workflows, we combine MSI, histological staining (such as hematoxylin and eosin), and deep learning (automatic annotation of histology images) to investigate a pancreatic cancer mouse model. Neoplastic pancreatic tissue regions, which were histologically indistinguishable from one another, were observed to be metabolically different. We demonstrate the use of the proposed methods to better understand tumor heterogeneity and the tumor microenvironment by transferring machine learning results freely between the two modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高大zj发布了新的文献求助10
1秒前
方方别方完成签到 ,获得积分10
1秒前
1秒前
saluo完成签到,获得积分10
2秒前
llllly完成签到,获得积分10
2秒前
ash发布了新的文献求助10
4秒前
4秒前
浪而而发布了新的文献求助10
4秒前
5秒前
5秒前
上官若男应助高大zj采纳,获得10
6秒前
yy00应助江氏巨颏虎采纳,获得260
6秒前
饱满的香烟完成签到,获得积分20
6秒前
寇旭晗完成签到 ,获得积分10
6秒前
9秒前
9秒前
wt200001完成签到,获得积分10
9秒前
小猫多鱼完成签到,获得积分10
9秒前
庾磬发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
13秒前
14秒前
gangstashit发布了新的文献求助10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
tuanheqi应助科研通管家采纳,获得50
16秒前
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514849
求助须知:如何正确求助?哪些是违规求助? 3097216
关于积分的说明 9234514
捐赠科研通 2792168
什么是DOI,文献DOI怎么找? 1532293
邀请新用户注册赠送积分活动 711963
科研通“疑难数据库(出版商)”最低求助积分说明 707062