Graphene Quantum Dots Disrupt Embryonic Stem Cell Differentiation by Interfering with the Methylation Level of Sox2

SOX2 下调和上调 胚胎干细胞 细胞生物学 DNA甲基化 胚状体 同源盒蛋白纳米 干细胞 化学 细胞分化 生物 诱导多能干细胞 生物化学 基因表达 基因
作者
Tingting Ku,Fang Hao,Xiaoxi Yang,Ziyu Rao,Qian S. Liu,Nan Sang,Francesco Faiola,Qunfang Zhou,Guibin Jiang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (5): 3144-3155 被引量:30
标识
DOI:10.1021/acs.est.0c07359
摘要

The tremendous potential for graphene quantum dots (GQDs) in biomedical applications has led to growing concerns of their health risks in human beings. However, present studies mainly focused on oxidative stress, apoptosis, and other general toxicity effects; the knowledge on the developmental toxicity and the related regulatory mechanisms is still far from sufficient. Our study revealed the development retardation of mouse embryonic stem cells (mESCs) caused by GQDs with a novel DNA methylation epigenetic mechanism. Specifically, GQDs were internalized into cells mainly via energy-dependent endocytosis, and a significant fraction of internalized GQDs remained in the cells even after a 48-h clearance period. Albeit with unobservable cytotoxicity or any influences on cell pluripotency, significant retardation was found in the in vitro differentiation of the mESCs into embryoid bodies (EBs) with the upregulation of Sox2 levels in GQD pretreatment groups. Importantly, this effect could be contributed by GQD-induced inhibition in CpG methylation of Sox2 through altering methyltransferase and demethyltransferase transcriptional expressions, and the demethyltransferase inhibitor, bobcat339 hydrochloride, reduced GQD-induced upregulation of Sox2. The current study first demonstrated that GQDs compromised the differentiation program of the mESCs, potentially causing development retardation. Exposure to this nanomaterial during gestation or early developmental period would cause adverse health risks and is worthy of more attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Esfec采纳,获得10
刚刚
刚刚
Free完成签到,获得积分20
1秒前
2秒前
2秒前
知胜zjl完成签到 ,获得积分10
3秒前
vksvnsk完成签到,获得积分10
3秒前
3秒前
sgssm发布了新的文献求助10
4秒前
4秒前
casperzwj完成签到,获得积分10
5秒前
优美荷花完成签到,获得积分20
5秒前
爆米花应助文龙采纳,获得10
5秒前
reflux应助JACK采纳,获得10
6秒前
木木 12完成签到,获得积分10
6秒前
as关闭了as文献求助
6秒前
明理元菱发布了新的文献求助20
6秒前
6秒前
马家辉完成签到,获得积分10
7秒前
AY完成签到,获得积分20
7秒前
Sherlock发布了新的文献求助10
8秒前
8秒前
Yue完成签到,获得积分10
8秒前
拼搏的忆寒完成签到,获得积分10
9秒前
CarryZ8完成签到,获得积分10
9秒前
在水一方应助时而采纳,获得10
9秒前
10秒前
Jasper应助义气的三德采纳,获得10
10秒前
10秒前
桃子发布了新的文献求助10
10秒前
10秒前
山水木发布了新的文献求助10
11秒前
11秒前
小白发布了新的文献求助10
11秒前
xyy完成签到,获得积分10
11秒前
大爱仙尊发布了新的文献求助10
12秒前
樊伟诚完成签到,获得积分10
12秒前
CUGjy发布了新的文献求助10
13秒前
完美梨愁发布了新的文献求助10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246