A novel geodesic flow kernel based domain adaptation approach for intelligent fault diagnosis under varying working condition

计算机科学 测地线 域适应 稳健性(进化) 规范化(社会学) 预处理器 特征提取 人工智能 Softmax函数 机器学习 模式识别(心理学) 数学 深度学习 数学分析 人类学 社会学 基因 分类器(UML) 化学 生物化学
作者
Zhongwei Zhang,Huaihai Chen,Shunming Li,Zenghui An,Jinrui Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:376: 54-64 被引量:45
标识
DOI:10.1016/j.neucom.2019.09.081
摘要

Abstract Domain adaptation techniques have drawn much attention for mechanical defect diagnosis in recent years. Nevertheless, the traditional domain adaptation approaches may suffer two shortcomings: (1) Poor performance is obtained for many traditional domain adaptation approaches when the sample is insufficient. (2) The diagnosis results are not stable, that is to say, the traditional domain adaptation approaches may have poor robustness. In order to overcome these deficiencies, we propose a novel domain adaptation model named DAGSZ based on geodesic flow kernel (GFK), strengthened feature extraction and Z-score normalization. Firstly, time domain average and square for the power spectral density (PSD) matrix is applied for preprocessing the original vibration data to learn more representative features. Then, the geodesic flow kernel (GFK), an unsupervised domain adaptation method, is adopted for learning the transferable features. Finally, Z-score normalization is employed to normalize the learned transferable features and softmax regression is utilized to classify the health conditions. The real-world dataset of gears and bearings are employed to validate the effectiveness and robustness of our method. The result shows that DAGSZ obtains fairly high detection accuracies and is superior to the existing methods for mechanical fault detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小魔笛发布了新的文献求助10
刚刚
1秒前
万卷书发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
机灵柚子应助科研通管家采纳,获得10
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
机灵柚子应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Tomato应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Tomato应助科研通管家采纳,获得10
3秒前
机灵柚子应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
机灵柚子应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
开心叫兽发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778188
求助须知:如何正确求助?哪些是违规求助? 5639026
关于积分的说明 15448263
捐赠科研通 4910052
什么是DOI,文献DOI怎么找? 2642147
邀请新用户注册赠送积分活动 1590080
关于科研通互助平台的介绍 1544494