Learned Fast HEVC Intra Coding

计算机科学 计算复杂性理论 四叉树 编码(社会科学) 算法效率 算法 量化(信号处理) 加速 理论计算机科学 数学 并行计算 统计
作者
Zhibo Chen,Jun Shi,Weiping Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 5431-5446 被引量:49
标识
DOI:10.1109/tip.2020.2982832
摘要

In High Efficiency Video Coding (HEVC), excellent rate-distortion (RD) performance is achieved in part by having a flexible quadtree coding unit (CU) partition and a large number of intra-prediction modes. Such an excellent RD performance is achieved at the expense of much higher computational complexity. In this paper, we propose a learned fast HEVC intra coding (LFHI) framework taking into account the comprehensive factors of fast intra coding to reach an improved configurable tradeoff between coding performance and computational complexity. First, we design a low-complex shallow asymmetric-kernel CNN (AK-CNN) to efficiently extract the local directional texture features of each block for both fast CU partition and fast intra-mode decision. Second, we introduce the concept of the minimum number of RDO candidates (MNRC) into fast mode decision, which utilizes AK-CNN to predict the minimum number of best candidates for RDO calculation to further reduce the computation of intra-mode selection. Third, an evolution optimized threshold decision (EOTD) scheme is designed to achieve configurable complexity-efficiency tradeoffs. Finally, we propose an interpolation-based prediction scheme that allows for our framework to be generalized to all quantization parameters (QPs) without the need for training the network on each QP. The experimental results demonstrate that the LFHI framework has a high degree of parallelism and achieves a much better complexity-efficiency tradeoff, achieving up to 75.2% intra-mode encoding complexity reduction with negligible rate-distortion performance degradation, superior to the existing fast intra-coding schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心微笑发布了新的文献求助10
1秒前
2秒前
巴斯光年完成签到,获得积分20
2秒前
自行输入昵称完成签到 ,获得积分10
3秒前
cheng发布了新的文献求助10
4秒前
down完成签到,获得积分10
4秒前
儿学化学打断腿完成签到,获得积分10
7秒前
野性的映菱完成签到,获得积分10
9秒前
Rondab应助down采纳,获得10
12秒前
舒服的初蓝完成签到,获得积分10
12秒前
斯文败类应助小涛采纳,获得10
14秒前
chuckle完成签到,获得积分10
15秒前
15秒前
眼圆广志完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
可爱的函函应助lignin采纳,获得10
17秒前
mark发布了新的文献求助10
19秒前
21秒前
23秒前
眼睛大雨筠应助AI imaging采纳,获得50
27秒前
方羽发布了新的文献求助10
28秒前
小涛完成签到,获得积分10
29秒前
29秒前
汤姆完成签到,获得积分10
31秒前
脑洞疼应助Arjun采纳,获得10
32秒前
yin完成签到 ,获得积分10
33秒前
aich完成签到,获得积分10
33秒前
Dada应助明亮小馒头采纳,获得30
33秒前
34秒前
Jacky发布了新的文献求助10
35秒前
小松鼠完成签到 ,获得积分10
36秒前
haocong完成签到 ,获得积分10
37秒前
yayika完成签到 ,获得积分10
37秒前
疏才完成签到,获得积分10
38秒前
Ciri完成签到,获得积分10
39秒前
40秒前
Arjun完成签到,获得积分10
41秒前
41秒前
Arjun发布了新的文献求助10
43秒前
FashionBoy应助一一一采纳,获得10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689