Bioinformatics Analysis of Metabolomics Data Unveils Association of Metabolic Signatures with Methylation in Breast Cancer

代谢组学 代谢组 乳腺癌 亚型 计算生物学 生物信息学 转录组 DNA甲基化 癌症 生物 遗传学 计算机科学 基因 基因表达 程序设计语言
作者
Fadhl Alakwaa,Masha G. Savelieff
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:19 (7): 2879-2889 被引量:10
标识
DOI:10.1021/acs.jproteome.9b00755
摘要

Breast cancer (BC) contributes the highest global cancer mortality in women. BC tumors are highly heterogeneous, so subtyping by cell-surface markers is inadequate. Omics-driven tumor stratification is urgently needed to better understand BC and tailor therapies for personalized medicine. We used unsupervised k-means and partition around medoids (pam) to cluster metabolomics data from two data sets. The first comprised 271 BC tumors (data set 1) that were estrogen receptor (ER) positive (ER+, n = 204) or negative (ER–, n = 67) with 162 identified and validated metabolites. The second data set contained 67 BC samples (data set 2; ER+, n = 33; ER–, n = 34) and 352 known metabolites. Significance Analysis of Microarrays (SAM) was used to identify the most significant metabolites among these clusters, which were then reassigned into new clusters using prediction analysis of microarrays (PAM). Generally, metabolome-defined BC subtypes identified from either data set 1 or data set 2 were different from the well-known receptor- or transcriptome-defined subtypes. Metabolomics-directed clustering of data set 2 identified distinctive BC tumors characterized by metabolome profiles that associated with DNA methylation (p-value = 0.000 048, χ2 test). Pathway analysis of cluster metabolites revealed that nitrogen metabolism and aminoacyl-tRNA biosynthesis were highly related to BC subtyping. The pipeline may be run from GitHub: https://github.com/FADHLyemen/Metabolomics_signature. Our proposed bioinformatics pipeline analyzed metabolomics data from BC tumors, revealing clusters characterized by unique metabolic signatures that may potentially stratify BC patients and tailor precision treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助花轻采纳,获得10
刚刚
77在七月完成签到,获得积分10
刚刚
深情安青应助小叶子采纳,获得10
1秒前
关于完成签到,获得积分10
1秒前
不太重的稻草人完成签到,获得积分10
1秒前
研友_5476B5发布了新的文献求助10
1秒前
在水一方应助草莓苹果采纳,获得10
1秒前
小蘑菇应助墨凡采纳,获得10
1秒前
平常的擎宇完成签到,获得积分20
1秒前
2秒前
在水一方应助斯文的以亦采纳,获得10
2秒前
shin完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助忠玉采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
mTOR完成签到,获得积分10
2秒前
无奈醉柳完成签到,获得积分10
3秒前
文静的翠彤完成签到 ,获得积分10
3秒前
脑洞疼应助科研小废废采纳,获得10
3秒前
4秒前
暴躁的冬菱关注了科研通微信公众号
4秒前
fan完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Yy完成签到,获得积分10
4秒前
CipherSage应助路途中追逐采纳,获得10
4秒前
CC完成签到,获得积分10
5秒前
5秒前
mingjing发布了新的文献求助10
5秒前
负负得正完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
bkagyin应助小鬼不是采纳,获得30
6秒前
77在七月发布了新的文献求助10
7秒前
fei应助吃草草没采纳,获得20
7秒前
慕青应助uu采纳,获得10
7秒前
7秒前
7秒前
王一g完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744