A novel blood pressure estimation method based on the classification of oscillometric waveforms using machine-learning methods

血压 脉冲压力 舒张期 波形 心脏病学 医学 节拍(声学) 数学 内科学 人工智能 生物医学工程 计算机科学 声学 物理 电信 雷达
作者
Ahmed S. Alghamdi,Kemal Polat,Abdullah Alghoson,Abdulrahman A. Alshdadi,Ahmed A. Abd El‐Latif
出处
期刊:Applied Acoustics [Elsevier]
卷期号:164: 107279-107279 被引量:42
标识
DOI:10.1016/j.apacoust.2020.107279
摘要

Blood pressure measurement and prediction is an important condition for heart patients and people with heart problems and should be kept under constant control. In this study, based on the oscillometric waveform obtained from individuals using a cuff, the oscillometric waveforms are divided into three periods. These periods are; the first period from the starting point to the systolic blood pressure (SBP), the second period is between systolic blood pressure (SBP) and diastolic blood pressure (DBP), and the third period is between diastolic blood pressure (DBP) and end of the waveform. In the dataset used, the attributes obtained from the oscillometric wave envelope were subtracted for each pulse. On the dataset, the attributes of the beat corresponding to the systolic pressure point are labeled 1, and the attributes of the beat corresponding to the diastolic pressure point are labeled with 2. Other beats are labeled with 0. In the study, the dataset was first re-labeled. Systolic beats were labeled with 1, beats before systolic point, 2 with systolic, diastolic point including diastolic point, and 3 with a diastolic point. After re-labeling, 350 measurements, 300 measurements were divided into training and 50 measurements were divided into test data subset. Classifiers were trained with 300 subsets and the classifier model was produced. With the generated model, the classification of the pulse sequences in the test data subsets was performed. In the found label series, the first 1 to 2 label was marked as the systolic pressure point and the last 2 to 3 labels as the diastolic pressure point and the corresponding cuff pressures were estimated as systolic and diastolic pressure values. By classifying these periods, the systolic blood pressure (SBP) and diastolic blood pressure (DBP) values have been estimated using three classifier algorithms including k-nearest neighbor (kNN), weighted k-nearest neighbor (WkNN), and Bagged Trees algorithms. To evaluate the performance of the prediction algorithms, four different performance metrics comprising MAE (mean absolute error), MSE (mean square error), RMSE (root mean square error), and R2 have been used. For the estimation of SBP values using the kNN algorithm, weighted kNN, and Bagged Trees, the obtained MAEs are 3.590, 3.520, and 4.499, respectively. As for the estimation of DBP values using kNN algorithm, weighted kNN and, Bagged Trees, the obtained MAEs are 11.077, 11.032, and 13.069, respectively. The obtained results demonstrated that the proposed method could be used in the blood pressure estimation as the new approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助小白采纳,获得10
刚刚
冰冰发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
爆米花应助Windsea采纳,获得10
刚刚
2秒前
Z2H完成签到,获得积分10
2秒前
依旧完成签到 ,获得积分10
2秒前
2秒前
3秒前
taotie发布了新的文献求助10
4秒前
windflake完成签到,获得积分10
4秒前
4秒前
zmin完成签到,获得积分10
4秒前
魔幻大有发布了新的文献求助10
4秒前
5秒前
LQQ发布了新的文献求助10
5秒前
FashionBoy应助WH采纳,获得10
5秒前
6秒前
ma发布了新的文献求助10
6秒前
7秒前
老迟到的醉卉完成签到,获得积分10
7秒前
7秒前
欣喜十八给欣喜十八的求助进行了留言
7秒前
wanci应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
Orange应助科研通管家采纳,获得30
8秒前
8秒前
魏映霞发布了新的文献求助10
8秒前
dy发布了新的文献求助10
9秒前
9秒前
隐形曼青应助xian林采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809