Improving Caries Risk Prediction Modeling: A Call for Action

行动号召 风险评估 动作(物理) 计算机科学 风险分析(工程) 医学 业务 计算机安全 营销 量子力学 物理
作者
Margherita Fontana,Alonso Carrasco‐Labra,Heiko Spallek,George J. Eckert,Barry P. Katz
出处
期刊:Journal of Dental Research [SAGE]
卷期号:99 (11): 1215-1220 被引量:33
标识
DOI:10.1177/0022034520934808
摘要

Dentistry has entered an era of personalized/precision care in which targeting care to groups, individuals, or even tooth surfaces based on their caries risk has become a reality to address the skewed distribution of the disease. The best approach to determine a patient's prognosis relies on the development of caries risk prediction models (CRPMs). A desirable model should be derived and validated to appropriately discriminate between patients who will develop disease from those who will not, and it should provide an accurate estimation of the patient's absolute risk (i.e., calibration). However, evidence suggests there is a need to improve the methodological standards and increase consistency in the way CRPMs are developed and evaluated. In fact, although numerous caries risk assessment tools are available, most are not routinely used in practice or used to influence treatment decisions, and choice is not commonly based on high-quality evidence. Research will propose models that will become more complex, incorporating new factors with high prognostic value (e.g., human genetic markers, microbial biomarkers). Big data and predictive analytic methods will be part of the new approaches for the identification of promising predictors with the ability to monitor patients' risk in real time. Eventually, the implementation of validated, accurate CRPMs will have to follow a user-centered design respecting the patient-clinician dynamic, with no disruption to the clinical workflow, and needs to operate at low cost. The resulting predictive risk estimate needs to be presented to the patient in an understandable way so that it triggers behavior change and effectively informs health care decision making, to ultimately improve caries outcomes. However, research on these later aspects is largely missing and increasingly needed in dentistry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田洋洋发布了新的文献求助10
1秒前
2秒前
3秒前
ZYH发布了新的文献求助10
4秒前
负责的钢笔关注了科研通微信公众号
4秒前
松哥完成签到,获得积分10
5秒前
6秒前
6秒前
baozibaozi发布了新的文献求助10
7秒前
谨慎含双发布了新的文献求助10
7秒前
栀初发布了新的文献求助10
8秒前
8秒前
王九八发布了新的文献求助10
9秒前
9秒前
甜美翠彤发布了新的文献求助10
9秒前
游小白发布了新的文献求助10
10秒前
祁布布发布了新的文献求助30
11秒前
13秒前
13秒前
一朵云完成签到 ,获得积分10
13秒前
LS-GENIUS发布了新的文献求助10
14秒前
独特翠丝完成签到,获得积分10
16秒前
小蘑菇应助baozibaozi采纳,获得10
16秒前
鲸鱼完成签到,获得积分10
16秒前
17秒前
18秒前
爆米花应助谨慎含双采纳,获得10
19秒前
CHENNIAN完成签到 ,获得积分10
19秒前
21秒前
呐呐应助jingsihan采纳,获得10
21秒前
缥缈芷珍完成签到,获得积分10
22秒前
maox1aoxin完成签到,获得积分0
23秒前
在水一方应助一个小胖子采纳,获得10
24秒前
大力的宝川完成签到 ,获得积分10
24秒前
to on完成签到,获得积分10
25秒前
to on发布了新的文献求助10
28秒前
研友_ndkyVL发布了新的文献求助30
30秒前
平淡的快乐完成签到,获得积分10
31秒前
游小白完成签到,获得积分10
31秒前
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268192
求助须知:如何正确求助?哪些是违规求助? 2907725
关于积分的说明 8342998
捐赠科研通 2578107
什么是DOI,文献DOI怎么找? 1401677
科研通“疑难数据库(出版商)”最低求助积分说明 655122
邀请新用户注册赠送积分活动 634209