Incremental Mobile User Profiling: Reinforcement Learning with Spatial Knowledge Graph for Modeling Event Streams

计算机科学 仿形(计算机编程) 强化学习 规划师 空间语境意识 图形 用户配置文件 人机交互 人工智能 机器学习 万维网 理论计算机科学 操作系统
作者
Pengyang Wang,Kunpeng Liu,Lu Jiang,Xiaolin Li,Yanjie Fu
标识
DOI:10.1145/3394486.3403128
摘要

We study the integration of reinforcement learning and spatial knowledge graph for incremental mobile user profiling, which aims to map mobile users to dynamically-updated profile vectors by incremental learning from a mixed-user event stream. After exploring many profiling methods, we identify a new imitation based criteria to better evaluate and optimize profiling accuracy. Considering the objective of teaching an autonomous agent to imitate a mobile user to plan next-visit based on the user's profile, the user profile is the most accurate when the agent can perfectly mimic the activity patterns of the user. We propose to formulate the problem into a reinforcement learning task, where an agent is a next-visit planner, an action is a POI that a user will visit next, and the state of environment is a fused representation of a user and spatial entities (e.g., POIs, activity types, functional zones). An event that a user takes an action to visit a POI, will change the environment, resulting into a new state of user profiles and spatial entities, which helps the agent to predict next visit more accurately. After analyzing such interactions among events, users, and spatial entities, we identify (1)semantic connectivity among spatial entities, and, thus, introduce a spatial Knowledge Graph (KG) to characterize the semantics of user visits over connected locations, activities, and zones. Besides, we identify (2) mutual influence between users and the spatial KG, and, thus, develop a mutual-updating strategy between users and the spatial KG, mixed with temporal context, to quantify the state representation that evolves over time. Along these lines, we develop a reinforcement learning framework integrated with spatial KG. The proposed framework can achieve incremental learning in multi-user profiling given a mixed-user event stream. Finally, we apply our approach to human mobility activity prediction and present extensive experiments to demonstrate improved performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云霓发布了新的文献求助10
刚刚
刚刚
zhj完成签到,获得积分10
1秒前
LLL完成签到,获得积分10
1秒前
1秒前
JA发布了新的文献求助50
2秒前
查无此人发布了新的文献求助10
2秒前
承诺信守完成签到,获得积分10
3秒前
酷波er应助七点采纳,获得10
3秒前
4秒前
4秒前
ABC发布了新的文献求助10
4秒前
醋灯笼完成签到,获得积分10
5秒前
5秒前
lalala应助sci_sci采纳,获得10
6秒前
7秒前
7秒前
FashionBoy应助夏末采纳,获得10
7秒前
8秒前
团子发布了新的文献求助10
8秒前
科研通AI6应助guangyu采纳,获得10
9秒前
传奇3应助聪明的半青采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
端庄芯发布了新的文献求助10
12秒前
13秒前
不做科研发布了新的文献求助10
13秒前
幸运鹅47完成签到,获得积分10
14秒前
夜染发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
17秒前
bonjourqiao完成签到,获得积分10
19秒前
19秒前
20秒前
清凉茶完成签到,获得积分10
21秒前
小二郎应助花生什么树了采纳,获得10
22秒前
天天快乐应助iwonder采纳,获得10
22秒前
wanci应助郑方舟采纳,获得10
23秒前
珊明治完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304