重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Incremental Mobile User Profiling: Reinforcement Learning with Spatial Knowledge Graph for Modeling Event Streams

计算机科学 仿形(计算机编程) 强化学习 规划师 空间语境意识 图形 用户配置文件 人机交互 人工智能 机器学习 万维网 理论计算机科学 操作系统
作者
Pengyang Wang,Kunpeng Liu,Lu Jiang,Xiaolin Li,Yanjie Fu
标识
DOI:10.1145/3394486.3403128
摘要

We study the integration of reinforcement learning and spatial knowledge graph for incremental mobile user profiling, which aims to map mobile users to dynamically-updated profile vectors by incremental learning from a mixed-user event stream. After exploring many profiling methods, we identify a new imitation based criteria to better evaluate and optimize profiling accuracy. Considering the objective of teaching an autonomous agent to imitate a mobile user to plan next-visit based on the user's profile, the user profile is the most accurate when the agent can perfectly mimic the activity patterns of the user. We propose to formulate the problem into a reinforcement learning task, where an agent is a next-visit planner, an action is a POI that a user will visit next, and the state of environment is a fused representation of a user and spatial entities (e.g., POIs, activity types, functional zones). An event that a user takes an action to visit a POI, will change the environment, resulting into a new state of user profiles and spatial entities, which helps the agent to predict next visit more accurately. After analyzing such interactions among events, users, and spatial entities, we identify (1)semantic connectivity among spatial entities, and, thus, introduce a spatial Knowledge Graph (KG) to characterize the semantics of user visits over connected locations, activities, and zones. Besides, we identify (2) mutual influence between users and the spatial KG, and, thus, develop a mutual-updating strategy between users and the spatial KG, mixed with temporal context, to quantify the state representation that evolves over time. Along these lines, we develop a reinforcement learning framework integrated with spatial KG. The proposed framework can achieve incremental learning in multi-user profiling given a mixed-user event stream. Finally, we apply our approach to human mobility activity prediction and present extensive experiments to demonstrate improved performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GGBond完成签到,获得积分10
刚刚
清风伴夜亭完成签到,获得积分10
1秒前
1秒前
1秒前
Zx_1993应助nini采纳,获得10
1秒前
飞跃完成签到 ,获得积分10
2秒前
谢佳冀完成签到,获得积分10
2秒前
852应助乐观的眼睛采纳,获得10
2秒前
科研通AI6应助xiaoniuma采纳,获得10
3秒前
arizaki7完成签到,获得积分10
3秒前
3秒前
saikun发布了新的文献求助10
3秒前
bing完成签到 ,获得积分10
3秒前
4秒前
好运6连发布了新的文献求助10
4秒前
粉色小妖精完成签到,获得积分10
4秒前
4秒前
4秒前
谢佳冀发布了新的文献求助10
5秒前
苦咖啡发布了新的文献求助10
5秒前
5秒前
橙子发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
kekekelili完成签到,获得积分10
8秒前
8秒前
8秒前
星辰大海应助李雯雯采纳,获得10
8秒前
8秒前
8秒前
lover发布了新的文献求助10
8秒前
可靠的薯片完成签到,获得积分10
9秒前
SS2D完成签到,获得积分10
9秒前
希望天下0贩的0应助wjw采纳,获得10
9秒前
Lucas应助clientprogram采纳,获得30
10秒前
10秒前
魏什么发布了新的文献求助10
11秒前
11秒前
11秒前
研友_84WJXZ发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516