Incremental Mobile User Profiling: Reinforcement Learning with Spatial Knowledge Graph for Modeling Event Streams

计算机科学 仿形(计算机编程) 强化学习 规划师 空间语境意识 图形 用户配置文件 人机交互 人工智能 机器学习 万维网 理论计算机科学 操作系统
作者
Pengyang Wang,Kunpeng Liu,Lu Jiang,Xiaolin Li,Yanjie Fu
标识
DOI:10.1145/3394486.3403128
摘要

We study the integration of reinforcement learning and spatial knowledge graph for incremental mobile user profiling, which aims to map mobile users to dynamically-updated profile vectors by incremental learning from a mixed-user event stream. After exploring many profiling methods, we identify a new imitation based criteria to better evaluate and optimize profiling accuracy. Considering the objective of teaching an autonomous agent to imitate a mobile user to plan next-visit based on the user's profile, the user profile is the most accurate when the agent can perfectly mimic the activity patterns of the user. We propose to formulate the problem into a reinforcement learning task, where an agent is a next-visit planner, an action is a POI that a user will visit next, and the state of environment is a fused representation of a user and spatial entities (e.g., POIs, activity types, functional zones). An event that a user takes an action to visit a POI, will change the environment, resulting into a new state of user profiles and spatial entities, which helps the agent to predict next visit more accurately. After analyzing such interactions among events, users, and spatial entities, we identify (1)semantic connectivity among spatial entities, and, thus, introduce a spatial Knowledge Graph (KG) to characterize the semantics of user visits over connected locations, activities, and zones. Besides, we identify (2) mutual influence between users and the spatial KG, and, thus, develop a mutual-updating strategy between users and the spatial KG, mixed with temporal context, to quantify the state representation that evolves over time. Along these lines, we develop a reinforcement learning framework integrated with spatial KG. The proposed framework can achieve incremental learning in multi-user profiling given a mixed-user event stream. Finally, we apply our approach to human mobility activity prediction and present extensive experiments to demonstrate improved performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素的安雁完成签到,获得积分10
1秒前
适可而止发布了新的文献求助10
1秒前
ww4566完成签到,获得积分20
1秒前
jie完成签到,获得积分10
2秒前
张张发布了新的文献求助10
2秒前
meimingzi发布了新的文献求助10
4秒前
科研通AI2S应助asdfqwer采纳,获得10
4秒前
5秒前
8R60d8应助慈祥的翠桃采纳,获得10
7秒前
HEIKU应助慈祥的翠桃采纳,获得10
7秒前
子车茗应助慈祥的翠桃采纳,获得10
7秒前
子车茗应助慈祥的翠桃采纳,获得10
7秒前
fifteen应助慈祥的翠桃采纳,获得10
7秒前
rosalieshi应助慈祥的翠桃采纳,获得30
7秒前
粥粥完成签到,获得积分10
7秒前
烟花应助完美的海秋采纳,获得10
8秒前
Ayaya发布了新的文献求助10
9秒前
爱吃猫的鱼完成签到,获得积分10
10秒前
12秒前
以泪洗面奶完成签到,获得积分10
15秒前
一一应助昙华林大头蒜采纳,获得10
16秒前
Tschanch完成签到 ,获得积分10
16秒前
小橙子完成签到,获得积分10
18秒前
18秒前
19秒前
单薄惜文应助朴素的安雁采纳,获得10
22秒前
水果发布了新的文献求助10
23秒前
蘇蘇完成签到,获得积分10
24秒前
24秒前
江峰应助完美的海秋采纳,获得10
25秒前
violet发布了新的文献求助10
26秒前
27秒前
蘇蘇发布了新的文献求助10
29秒前
李健的小迷弟应助MYW采纳,获得10
30秒前
丘比特应助ABS采纳,获得10
32秒前
aao关闭了aao文献求助
32秒前
Doctor Tang完成签到,获得积分10
33秒前
淡定的弘完成签到,获得积分10
33秒前
安心完成签到,获得积分10
34秒前
熊仔一百完成签到,获得积分10
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240905
求助须知:如何正确求助?哪些是违规求助? 2885619
关于积分的说明 8239527
捐赠科研通 2554095
什么是DOI,文献DOI怎么找? 1382231
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625109