Incremental Mobile User Profiling: Reinforcement Learning with Spatial Knowledge Graph for Modeling Event Streams

计算机科学 仿形(计算机编程) 强化学习 规划师 空间语境意识 图形 用户配置文件 人机交互 人工智能 机器学习 万维网 理论计算机科学 操作系统
作者
Pengyang Wang,Kunpeng Liu,Lu Jiang,Xiaolin Li,Yanjie Fu
标识
DOI:10.1145/3394486.3403128
摘要

We study the integration of reinforcement learning and spatial knowledge graph for incremental mobile user profiling, which aims to map mobile users to dynamically-updated profile vectors by incremental learning from a mixed-user event stream. After exploring many profiling methods, we identify a new imitation based criteria to better evaluate and optimize profiling accuracy. Considering the objective of teaching an autonomous agent to imitate a mobile user to plan next-visit based on the user's profile, the user profile is the most accurate when the agent can perfectly mimic the activity patterns of the user. We propose to formulate the problem into a reinforcement learning task, where an agent is a next-visit planner, an action is a POI that a user will visit next, and the state of environment is a fused representation of a user and spatial entities (e.g., POIs, activity types, functional zones). An event that a user takes an action to visit a POI, will change the environment, resulting into a new state of user profiles and spatial entities, which helps the agent to predict next visit more accurately. After analyzing such interactions among events, users, and spatial entities, we identify (1)semantic connectivity among spatial entities, and, thus, introduce a spatial Knowledge Graph (KG) to characterize the semantics of user visits over connected locations, activities, and zones. Besides, we identify (2) mutual influence between users and the spatial KG, and, thus, develop a mutual-updating strategy between users and the spatial KG, mixed with temporal context, to quantify the state representation that evolves over time. Along these lines, we develop a reinforcement learning framework integrated with spatial KG. The proposed framework can achieve incremental learning in multi-user profiling given a mixed-user event stream. Finally, we apply our approach to human mobility activity prediction and present extensive experiments to demonstrate improved performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄归尘完成签到 ,获得积分10
刚刚
小红帽完成签到,获得积分10
1秒前
1秒前
Altman完成签到 ,获得积分10
1秒前
ee关闭了ee文献求助
1秒前
111完成签到,获得积分20
1秒前
认真的雪完成签到,获得积分10
1秒前
月野桃玖完成签到 ,获得积分20
1秒前
阳光男孩发布了新的文献求助10
1秒前
852应助雄鹰般的女人采纳,获得10
1秒前
2秒前
甲基苯丙胺完成签到,获得积分10
2秒前
隐形霸完成签到,获得积分10
2秒前
2秒前
今后应助123采纳,获得10
3秒前
3秒前
Echo发布了新的文献求助10
3秒前
所所应助NeoH采纳,获得10
3秒前
3秒前
5秒前
5秒前
天天快乐应助小红帽采纳,获得10
7秒前
7秒前
7秒前
7秒前
peteichor发布了新的文献求助10
8秒前
ee驳回了1351567822应助
9秒前
猪猪hero发布了新的文献求助10
10秒前
wanci应助kaida采纳,获得10
10秒前
10秒前
10秒前
10秒前
无为完成签到,获得积分10
11秒前
燕子发布了新的文献求助10
11秒前
11秒前
CA274ABTFY发布了新的文献求助10
12秒前
dawndawn发布了新的文献求助10
12秒前
cjt完成签到,获得积分10
13秒前
doctorxipishi发布了新的文献求助10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023175
求助须知:如何正确求助?哪些是违规求助? 3563272
关于积分的说明 11341846
捐赠科研通 3294815
什么是DOI,文献DOI怎么找? 1814780
邀请新用户注册赠送积分活动 889460
科研通“疑难数据库(出版商)”最低求助积分说明 812964