Incremental Mobile User Profiling: Reinforcement Learning with Spatial Knowledge Graph for Modeling Event Streams

计算机科学 仿形(计算机编程) 强化学习 规划师 空间语境意识 图形 用户配置文件 人机交互 人工智能 机器学习 万维网 理论计算机科学 操作系统
作者
Pengyang Wang,Kunpeng Liu,Lu Jiang,Xiaolin Li,Yanjie Fu
标识
DOI:10.1145/3394486.3403128
摘要

We study the integration of reinforcement learning and spatial knowledge graph for incremental mobile user profiling, which aims to map mobile users to dynamically-updated profile vectors by incremental learning from a mixed-user event stream. After exploring many profiling methods, we identify a new imitation based criteria to better evaluate and optimize profiling accuracy. Considering the objective of teaching an autonomous agent to imitate a mobile user to plan next-visit based on the user's profile, the user profile is the most accurate when the agent can perfectly mimic the activity patterns of the user. We propose to formulate the problem into a reinforcement learning task, where an agent is a next-visit planner, an action is a POI that a user will visit next, and the state of environment is a fused representation of a user and spatial entities (e.g., POIs, activity types, functional zones). An event that a user takes an action to visit a POI, will change the environment, resulting into a new state of user profiles and spatial entities, which helps the agent to predict next visit more accurately. After analyzing such interactions among events, users, and spatial entities, we identify (1)semantic connectivity among spatial entities, and, thus, introduce a spatial Knowledge Graph (KG) to characterize the semantics of user visits over connected locations, activities, and zones. Besides, we identify (2) mutual influence between users and the spatial KG, and, thus, develop a mutual-updating strategy between users and the spatial KG, mixed with temporal context, to quantify the state representation that evolves over time. Along these lines, we develop a reinforcement learning framework integrated with spatial KG. The proposed framework can achieve incremental learning in multi-user profiling given a mixed-user event stream. Finally, we apply our approach to human mobility activity prediction and present extensive experiments to demonstrate improved performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
doctor发布了新的文献求助10
2秒前
小二郎应助Kittymiaoo采纳,获得10
3秒前
3秒前
CT发布了新的文献求助10
4秒前
5秒前
属下存在感完成签到,获得积分10
5秒前
小二郎应助yck1027采纳,获得10
5秒前
Ann发布了新的文献求助10
6秒前
怕黑的含桃完成签到,获得积分10
6秒前
龅牙苏发布了新的文献求助10
7秒前
科研通AI2S应助liuqingyun采纳,获得10
10秒前
10秒前
万能图书馆应助标致幼菱采纳,获得10
10秒前
11秒前
小小精神应助Benji采纳,获得10
11秒前
jjy完成签到,获得积分10
11秒前
T=T生物完成签到,获得积分10
11秒前
小糊涂完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
龅牙苏完成签到,获得积分10
13秒前
共享精神应助汪勇采纳,获得10
13秒前
不吃橘子完成签到,获得积分10
13秒前
Cathy完成签到,获得积分10
16秒前
充电宝应助好运莲莲莲采纳,获得10
16秒前
分隔符发布了新的文献求助10
16秒前
CT完成签到,获得积分10
17秒前
遇见完成签到,获得积分10
17秒前
春风明月发布了新的文献求助10
19秒前
22秒前
22秒前
mmmmm完成签到,获得积分10
23秒前
23秒前
悦耳笑晴完成签到,获得积分20
23秒前
Cxxxx发布了新的文献求助10
24秒前
小王时完成签到,获得积分10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618454
求助须知:如何正确求助?哪些是违规求助? 4703358
关于积分的说明 14922268
捐赠科研通 4757546
什么是DOI,文献DOI怎么找? 2550099
邀请新用户注册赠送积分活动 1512920
关于科研通互助平台的介绍 1474299