Incremental Mobile User Profiling: Reinforcement Learning with Spatial Knowledge Graph for Modeling Event Streams

计算机科学 仿形(计算机编程) 强化学习 规划师 空间语境意识 图形 用户配置文件 人机交互 人工智能 机器学习 万维网 理论计算机科学 操作系统
作者
Pengyang Wang,Kunpeng Liu,Lu Jiang,Xiaolin Li,Yanjie Fu
标识
DOI:10.1145/3394486.3403128
摘要

We study the integration of reinforcement learning and spatial knowledge graph for incremental mobile user profiling, which aims to map mobile users to dynamically-updated profile vectors by incremental learning from a mixed-user event stream. After exploring many profiling methods, we identify a new imitation based criteria to better evaluate and optimize profiling accuracy. Considering the objective of teaching an autonomous agent to imitate a mobile user to plan next-visit based on the user's profile, the user profile is the most accurate when the agent can perfectly mimic the activity patterns of the user. We propose to formulate the problem into a reinforcement learning task, where an agent is a next-visit planner, an action is a POI that a user will visit next, and the state of environment is a fused representation of a user and spatial entities (e.g., POIs, activity types, functional zones). An event that a user takes an action to visit a POI, will change the environment, resulting into a new state of user profiles and spatial entities, which helps the agent to predict next visit more accurately. After analyzing such interactions among events, users, and spatial entities, we identify (1)semantic connectivity among spatial entities, and, thus, introduce a spatial Knowledge Graph (KG) to characterize the semantics of user visits over connected locations, activities, and zones. Besides, we identify (2) mutual influence between users and the spatial KG, and, thus, develop a mutual-updating strategy between users and the spatial KG, mixed with temporal context, to quantify the state representation that evolves over time. Along these lines, we develop a reinforcement learning framework integrated with spatial KG. The proposed framework can achieve incremental learning in multi-user profiling given a mixed-user event stream. Finally, we apply our approach to human mobility activity prediction and present extensive experiments to demonstrate improved performances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
景清完成签到,获得积分10
1秒前
开心饭完成签到,获得积分10
1秒前
1秒前
gzj关注了科研通微信公众号
2秒前
Grace发布了新的文献求助30
2秒前
Shydaworst完成签到,获得积分20
3秒前
彭于晏应助虚幻的捕采纳,获得10
3秒前
4秒前
zzuzll发布了新的文献求助10
4秒前
奇异果完成签到,获得积分10
4秒前
4秒前
灵巧冰露完成签到,获得积分10
4秒前
lyb1853完成签到 ,获得积分10
4秒前
轨迹应助阴天的向日葵采纳,获得30
5秒前
欧阳香彤完成签到,获得积分10
6秒前
星辰大海应助何二花采纳,获得50
6秒前
弥漫的橘发布了新的文献求助10
7秒前
慕青应助客厅狂欢采纳,获得10
7秒前
乐乐应助陆柒八采纳,获得10
7秒前
zyueyun发布了新的文献求助10
8秒前
赵玉珊完成签到,获得积分10
8秒前
东篱完成签到 ,获得积分10
8秒前
陈康完成签到,获得积分10
8秒前
池台下完成签到 ,获得积分10
8秒前
stone完成签到,获得积分10
9秒前
9秒前
runaway完成签到 ,获得积分20
10秒前
H_完成签到 ,获得积分10
10秒前
打打应助zl987采纳,获得10
11秒前
晨光完成签到,获得积分20
11秒前
小二郎应助酷炫星星采纳,获得10
11秒前
11秒前
yanyan完成签到,获得积分10
11秒前
aaaaa小柴发布了新的文献求助10
11秒前
12秒前
CipherSage应助Zymiao采纳,获得10
13秒前
虚心醉柳发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736010
求助须知:如何正确求助?哪些是违规求助? 5363574
关于积分的说明 15331883
捐赠科研通 4880027
什么是DOI,文献DOI怎么找? 2622477
邀请新用户注册赠送积分活动 1571485
关于科研通互助平台的介绍 1528316