Deep 3D Object Detection Networks Using LiDAR Data: A Review

计算机科学 激光雷达 人工智能 点云 目标检测 计算机视觉 深度学习 遥感 对象(语法) 模式识别(心理学) 地理
作者
Yutian Wu,Yueyu Wang,Shuwei Zhang,Harutoshi Ogai
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 1152-1171 被引量:79
标识
DOI:10.1109/jsen.2020.3020626
摘要

As the foundation of intelligent systems, machine vision perceives the surrounding environment and provides a basis for decision-making. Object detection is the core task in machine vision. 3D object detection can provide object steric size and location information. Compared with the 2D object detection widely studied in image coordinates, it can provide more applications of detection systems. Accurate LiDAR data has a stronger spatial capture capability and is insensitive to natural light, which makes LiDAR a potential sensor for 3D detection. Recently, deep neural network has been developed to learn powerful object features from sensor data. However, the sparsity of LiDAR point cloud data poses challenges to the network processing. Plenty of emerged efforts have been made to address this difficulty, but a comprehensive review literature is still lacking. The purpose of this article is to review the challenges and methodologies of 3D object detection networks using LiDAR data. On this account, we first give an outline of 3D detection task and LiDAR sensing techniques. Then we unfold the review of deep 3D detection networks with three kinds of LiDAR point cloud representations and their challenges. We next summarize evaluation metrics and performance of algorithms on three authoritative 3D detection benchmarks. Finally, we provide valuable insights of challenges and open issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助端庄的蜡烛采纳,获得10
刚刚
john_joestar完成签到,获得积分10
刚刚
现实的中心完成签到,获得积分10
刚刚
柚子完成签到,获得积分10
1秒前
Fred Guan完成签到,获得积分10
1秒前
剑指天涯发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
Ava应助正直乘云采纳,获得10
2秒前
科研通AI6应助人人采纳,获得10
2秒前
别斑秃了完成签到 ,获得积分10
2秒前
xyh发布了新的文献求助10
2秒前
2秒前
任性慕青发布了新的文献求助10
3秒前
俭朴爆米花完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
NexusExplorer应助WY采纳,获得10
5秒前
ffxxinnnn发布了新的文献求助10
5秒前
PIngguo完成签到,获得积分10
5秒前
5秒前
5秒前
我是老大应助lyt采纳,获得10
6秒前
bhjSIde完成签到,获得积分10
6秒前
小太阳发布了新的文献求助10
7秒前
7秒前
Hello应助细胞不凋王女士采纳,获得30
7秒前
xiejuan完成签到,获得积分10
8秒前
Emper完成签到,获得积分10
8秒前
可靠幼旋发布了新的文献求助10
8秒前
充电宝应助五月采纳,获得10
8秒前
司连喜发布了新的文献求助10
8秒前
8秒前
高小明发布了新的文献求助10
8秒前
JamesPei应助laofe采纳,获得10
8秒前
韩月发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576925
求助须知:如何正确求助?哪些是违规求助? 4662126
关于积分的说明 14740050
捐赠科研通 4602835
什么是DOI,文献DOI怎么找? 2525962
邀请新用户注册赠送积分活动 1495839
关于科研通互助平台的介绍 1465470