Deep 3D Object Detection Networks Using LiDAR Data: A Review

计算机科学 激光雷达 人工智能 点云 目标检测 计算机视觉 深度学习 遥感 对象(语法) 模式识别(心理学) 地理
作者
Yutian Wu,Yueyu Wang,Shuwei Zhang,Harutoshi Ogai
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 1152-1171 被引量:79
标识
DOI:10.1109/jsen.2020.3020626
摘要

As the foundation of intelligent systems, machine vision perceives the surrounding environment and provides a basis for decision-making. Object detection is the core task in machine vision. 3D object detection can provide object steric size and location information. Compared with the 2D object detection widely studied in image coordinates, it can provide more applications of detection systems. Accurate LiDAR data has a stronger spatial capture capability and is insensitive to natural light, which makes LiDAR a potential sensor for 3D detection. Recently, deep neural network has been developed to learn powerful object features from sensor data. However, the sparsity of LiDAR point cloud data poses challenges to the network processing. Plenty of emerged efforts have been made to address this difficulty, but a comprehensive review literature is still lacking. The purpose of this article is to review the challenges and methodologies of 3D object detection networks using LiDAR data. On this account, we first give an outline of 3D detection task and LiDAR sensing techniques. Then we unfold the review of deep 3D detection networks with three kinds of LiDAR point cloud representations and their challenges. We next summarize evaluation metrics and performance of algorithms on three authoritative 3D detection benchmarks. Finally, we provide valuable insights of challenges and open issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
林瀚铅发布了新的文献求助10
3秒前
4秒前
plmm发布了新的文献求助10
5秒前
任我行完成签到,获得积分10
5秒前
钱多多发布了新的文献求助10
5秒前
nxxxxxxxxxx完成签到,获得积分10
5秒前
哈哈发布了新的文献求助10
6秒前
科研通AI2S应助闪闪身影采纳,获得10
6秒前
u深度完成签到 ,获得积分10
6秒前
王木木完成签到,获得积分10
6秒前
甜美无剑完成签到,获得积分10
8秒前
9秒前
10秒前
zhou发布了新的文献求助10
11秒前
12秒前
锌小子完成签到,获得积分10
12秒前
啊啊啊啊啊123完成签到,获得积分10
15秒前
平淡的伯云完成签到,获得积分10
15秒前
善学以致用应助哈哈采纳,获得10
17秒前
传统的幻梦完成签到,获得积分10
17秒前
共享精神应助plmm采纳,获得30
17秒前
19秒前
勤恳紫山发布了新的文献求助10
20秒前
脑洞疼应助zhou采纳,获得10
21秒前
21秒前
小马甲应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得30
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
甜甜玫瑰应助科研通管家采纳,获得10
23秒前
pluto应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得20
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
kuoping完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056002
求助须知:如何正确求助?哪些是违规求助? 2712582
关于积分的说明 7432387
捐赠科研通 2357594
什么是DOI,文献DOI怎么找? 1248929
科研通“疑难数据库(出版商)”最低求助积分说明 606823
版权声明 596195