Deep 3D Object Detection Networks Using LiDAR Data: A Review

计算机科学 激光雷达 人工智能 点云 目标检测 计算机视觉 深度学习 遥感 对象(语法) 模式识别(心理学) 地理
作者
Yutian Wu,Yueyu Wang,Shuwei Zhang,Harutoshi Ogai
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (2): 1152-1171 被引量:79
标识
DOI:10.1109/jsen.2020.3020626
摘要

As the foundation of intelligent systems, machine vision perceives the surrounding environment and provides a basis for decision-making. Object detection is the core task in machine vision. 3D object detection can provide object steric size and location information. Compared with the 2D object detection widely studied in image coordinates, it can provide more applications of detection systems. Accurate LiDAR data has a stronger spatial capture capability and is insensitive to natural light, which makes LiDAR a potential sensor for 3D detection. Recently, deep neural network has been developed to learn powerful object features from sensor data. However, the sparsity of LiDAR point cloud data poses challenges to the network processing. Plenty of emerged efforts have been made to address this difficulty, but a comprehensive review literature is still lacking. The purpose of this article is to review the challenges and methodologies of 3D object detection networks using LiDAR data. On this account, we first give an outline of 3D detection task and LiDAR sensing techniques. Then we unfold the review of deep 3D detection networks with three kinds of LiDAR point cloud representations and their challenges. We next summarize evaluation metrics and performance of algorithms on three authoritative 3D detection benchmarks. Finally, we provide valuable insights of challenges and open issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘跳跳糖完成签到,获得积分20
刚刚
1秒前
1秒前
C陈完成签到,获得积分10
3秒前
4秒前
suger发布了新的文献求助10
5秒前
6秒前
干雅柏完成签到,获得积分10
7秒前
八九完成签到,获得积分10
8秒前
9秒前
干雅柏发布了新的文献求助10
10秒前
Stardust发布了新的文献求助10
10秒前
黑白和完成签到 ,获得积分10
11秒前
yang完成签到,获得积分10
12秒前
金蛋蛋发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
19秒前
24秒前
淡定的电源完成签到,获得积分10
27秒前
27秒前
lm发布了新的文献求助10
30秒前
32秒前
善学以致用应助孤独问旋采纳,获得10
32秒前
孙燕应助霸气安筠采纳,获得30
33秒前
李健应助科研通管家采纳,获得10
33秒前
汉堡包应助科研通管家采纳,获得10
33秒前
SYLH应助科研通管家采纳,获得20
33秒前
SYLH应助科研通管家采纳,获得10
33秒前
上官若男应助科研通管家采纳,获得10
33秒前
烟花应助科研通管家采纳,获得10
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
SYLH应助科研通管家采纳,获得10
34秒前
CAOHOU应助科研通管家采纳,获得10
34秒前
SYLH应助科研通管家采纳,获得10
34秒前
CAOHOU应助科研通管家采纳,获得10
34秒前
SYLH应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
ding应助科研通管家采纳,获得10
34秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173