LDA-LNSUBRW: lncRNA-disease association prediction based on linear neighborhood similarity and unbalanced bi-random walk

相似性(几何) 计算机科学 随机游动 联想(心理学) 交叉验证 疾病 人工智能 数据挖掘 机器学习 模式识别(心理学) 数学 统计 医学 病理 图像(数学) 认识论 哲学
作者
Guobo Xie,Jiawei Jiang,Yuping Sun
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:35
标识
DOI:10.1109/tcbb.2020.3020595
摘要

Increasing number of experiments show that lncRNAs are involved in many biological processes, and their mutations and disorders are associated with many diseases. However, verifying the relationships between lncRNAs and diseases is time consuming and laborio. Searching for effective computational methods will contribute to our understanding of the underlying mechanisms of disease and identifying biomarkers of diseases. Therefore, we proposed a method called lncRNA-disease association prediction based on linear neighborhood similarity and unbalanced bi-random walk (LDA-LNSUBRW). Given that the known lncRNA-disease associations are rare, a pretreatment step should be performed to obtain the interaction possibility of unknown cases, so as to help us predict the potential associations. In the framework of leave-one-out cross-validation (LOOCV)and fivefold cross-validation (5-fold CV), LDA-LNSUBRW achieved effective performance with AUC of 0.8874 and 0.8632 $\pm$ 0.0051, respectively. The experimental results in this paper show that the proposed method is superior to five other state-of-the-art methods. In addition, case studies of three diseases (lung cancer, breast cancer, and osteosarcoma)were carried out to illustrate that LDA-LNSUBRW could predict the relevant lncRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anna完成签到,获得积分10
1秒前
yangkunmedical完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
adw完成签到,获得积分10
6秒前
6秒前
Ekko完成签到,获得积分10
6秒前
11完成签到 ,获得积分10
7秒前
8秒前
年轻凡双给年轻凡双的求助进行了留言
11秒前
11秒前
落寞臻发布了新的文献求助20
13秒前
百花完成签到,获得积分10
15秒前
我是废物完成签到,获得积分10
16秒前
8R60d8应助wuludie采纳,获得10
17秒前
科研小白菜完成签到,获得积分10
17秒前
18秒前
在水一方应助奋斗金连采纳,获得10
21秒前
21秒前
25秒前
小二郎应助彪壮的依风采纳,获得10
26秒前
27秒前
LaTeXer应助zachary采纳,获得40
27秒前
田様应助简单雁蓉采纳,获得10
28秒前
积极的绫完成签到 ,获得积分10
28秒前
云中应助落寞臻采纳,获得20
28秒前
英姑应助落寞臻采纳,获得10
29秒前
wuludie完成签到,获得积分0
33秒前
奋斗金连发布了新的文献求助10
33秒前
36秒前
36秒前
SY完成签到,获得积分10
36秒前
8R60d8应助have勇气采纳,获得10
36秒前
38秒前
奋斗金连完成签到,获得积分10
39秒前
小宁发布了新的文献求助10
39秒前
简单雁蓉发布了新的文献求助10
40秒前
龙龙酱完成签到,获得积分20
40秒前
42秒前
11完成签到,获得积分10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547