LDA-LNSUBRW: lncRNA-disease association prediction based on linear neighborhood similarity and unbalanced bi-random walk

相似性(几何) 计算机科学 随机游动 联想(心理学) 交叉验证 疾病 人工智能 数据挖掘 机器学习 模式识别(心理学) 数学 统计 医学 病理 图像(数学) 认识论 哲学
作者
Guobo Xie,Jiawei Jiang,Yuping Sun
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:35
标识
DOI:10.1109/tcbb.2020.3020595
摘要

Increasing number of experiments show that lncRNAs are involved in many biological processes, and their mutations and disorders are associated with many diseases. However, verifying the relationships between lncRNAs and diseases is time consuming and laborio. Searching for effective computational methods will contribute to our understanding of the underlying mechanisms of disease and identifying biomarkers of diseases. Therefore, we proposed a method called lncRNA-disease association prediction based on linear neighborhood similarity and unbalanced bi-random walk (LDA-LNSUBRW). Given that the known lncRNA-disease associations are rare, a pretreatment step should be performed to obtain the interaction possibility of unknown cases, so as to help us predict the potential associations. In the framework of leave-one-out cross-validation (LOOCV)and fivefold cross-validation (5-fold CV), LDA-LNSUBRW achieved effective performance with AUC of 0.8874 and 0.8632 $\pm$ 0.0051, respectively. The experimental results in this paper show that the proposed method is superior to five other state-of-the-art methods. In addition, case studies of three diseases (lung cancer, breast cancer, and osteosarcoma)were carried out to illustrate that LDA-LNSUBRW could predict the relevant lncRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阳光冰颜完成签到 ,获得积分10
2秒前
阔达的秀发完成签到,获得积分10
3秒前
ZengQiu发布了新的文献求助10
4秒前
4秒前
桂花发布了新的文献求助10
4秒前
Billy应助顺利臻采纳,获得30
5秒前
勤恳发布了新的文献求助10
5秒前
123456发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
小机灵鬼完成签到,获得积分10
8秒前
大头老婆完成签到 ,获得积分10
9秒前
11秒前
SWL完成签到,获得积分10
11秒前
ZengQiu完成签到,获得积分10
12秒前
周小满完成签到,获得积分10
12秒前
12秒前
12秒前
酷波er应助十一采纳,获得10
13秒前
13秒前
hulin_zjxu完成签到,获得积分10
15秒前
16秒前
sunzeyi完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
21秒前
MQRR发布了新的文献求助10
21秒前
Billy应助慈祥的翠桃采纳,获得30
22秒前
23秒前
不配.应助活力的初之采纳,获得20
23秒前
勤恳完成签到,获得积分10
24秒前
24秒前
葛力发布了新的文献求助10
24秒前
顺利臻给顺利臻的求助进行了留言
25秒前
稳重向南发布了新的文献求助10
27秒前
123456完成签到,获得积分10
28秒前
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242882
求助须知:如何正确求助?哪些是违规求助? 2887018
关于积分的说明 8245625
捐赠科研通 2555572
什么是DOI,文献DOI怎么找? 1383686
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625605