FEATS: feature selection-based clustering of single-cell RNA-seq data.

RNA序列 计算生物学 数据挖掘 模式识别(心理学)
作者
Edwin Vans,Ashwini Patil,Alok Sharma
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (4) 被引量:3
标识
DOI:10.1093/bib/bbaa306
摘要

MOTIVATION: Advances in next-generation sequencing have made it possible to carry out transcriptomic studies at single-cell resolution and generate vast amounts of single-cell RNA sequencing (RNA-seq) data rapidly. Thus, tools to analyze this data need to evolve as well as to improve accuracy and efficiency. RESULTS: We present FEATS, a Python software package, that performs clustering on single-cell RNA-seq data. FEATS is capable of performing multiple tasks such as estimating the number of clusters, conducting outlier detection and integrating data from various experiments. We develop a univariate feature selection-based approach for clustering, which involves the selection of top informative features to improve clustering performance. This is motivated by the fact that cell types are often manually determined using the expression of only a few known marker genes. On a variety of single-cell RNA-seq datasets, FEATS gives superior performance compared with the current tools, in terms of adjusted Rand index and estimating the number of clusters. It achieves a 22% improvement in clustering and more accurately estimates the number of clusters when compared with other tools. In addition to cluster estimation, FEATS also performs outlier detection and data integration while giving an excellent computational performance. Thus, FEATS is a comprehensive clustering tool capable of addressing the challenges during the clustering of single-cell RNA-seq data. AVAILABILITY: The installation instructions and documentation of FEATS is available at https://edwinv87.github.io/feats/. SUPPLEMENTARY DATA: Supplementary data are available online at https://academic.oup.com/bib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛豆应助CZQ采纳,获得10
2秒前
研友_VZG7GZ应助HEROTREE采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
情怀应助qwe采纳,获得10
4秒前
Fk发布了新的文献求助10
4秒前
nbbyysnbb发布了新的文献求助10
5秒前
共享精神应助yy采纳,获得10
6秒前
Akim应助无限的绮晴采纳,获得10
6秒前
马佳凯发布了新的文献求助10
7秒前
HEROTREE发布了新的文献求助10
8秒前
8秒前
qiong发布了新的文献求助10
8秒前
共享精神应助美丽芷珍采纳,获得10
8秒前
科研通AI2S应助执着的玉米采纳,获得10
10秒前
10秒前
special完成签到 ,获得积分10
12秒前
Yeah完成签到,获得积分10
13秒前
元宝团子发布了新的文献求助10
13秒前
大气绮兰发布了新的文献求助30
15秒前
科研通AI2S应助alyssa采纳,获得10
15秒前
好巧完成签到,获得积分10
15秒前
酷酷世开发布了新的文献求助10
16秒前
17秒前
yy完成签到,获得积分10
17秒前
医疗实用废物完成签到,获得积分10
18秒前
人间草木完成签到,获得积分10
20秒前
nbbyysnbb发布了新的文献求助10
20秒前
无限的绮晴完成签到,获得积分10
21秒前
yy发布了新的文献求助10
22秒前
Fk完成签到,获得积分20
24秒前
24秒前
25秒前
Lisztan发布了新的文献求助10
26秒前
美丽芷珍发布了新的文献求助10
27秒前
在水一方应助junyu采纳,获得30
27秒前
爆米花应助典雅的萤采纳,获得10
28秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Hopemont Capacity Assessment Interview manual and scoring guide 650
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422550
求助须知:如何正确求助?哪些是违规求助? 3022763
关于积分的说明 8902757
捐赠科研通 2710307
什么是DOI,文献DOI怎么找? 1486376
科研通“疑难数据库(出版商)”最低求助积分说明 687051
邀请新用户注册赠送积分活动 682285