Using Reinforcement Learning to Estimate Human Joint Moments From Electromyography or Joint Kinematics: An Alternative Solution to Musculoskeletal-Based Biomechanics

运动学 手腕 肌电图 生物力学 接头(建筑物) 力矩(物理) 计算机科学 前臂 掌指关节 逆动力学 物理医学与康复 数学 医学 解剖 工程类 拇指 结构工程 物理 经典力学
作者
Wen Wu,Katherine R. Saul,He Huang
出处
期刊:Journal of biomechanical engineering [ASM International]
卷期号:143 (4) 被引量:27
标识
DOI:10.1115/1.4049333
摘要

Reinforcement learning (RL) has potential to provide innovative solutions to existing challenges in estimating joint moments in motion analysis, such as kinematic or electromyography (EMG) noise and unknown model parameters. Here, we explore feasibility of RL to assist joint moment estimation for biomechanical applications. Forearm and hand kinematics and forearm EMGs from four muscles during free finger and wrist movement were collected from six healthy subjects. Using the proximal policy optimization approach, we trained two types of RL agents that estimated joint moment based on measured kinematics or measured EMGs, respectively. To quantify the performance of trained RL agents, the estimated joint moment was used to drive a forward dynamic model for estimating kinematics, which was then compared with measured kinematics using Pearson correlation coefficient. The results demonstrated that both trained RL agents are feasible to estimate joint moment for wrist and metacarpophalangeal (MCP) joint motion prediction. The correlation coefficients between predicted and measured kinematics, derived from the kinematics-driven agent and subject-specific EMG-driven agents, were 98% ± 1% and 94% ± 3% for the wrist, respectively, and were 95% ± 2% and 84% ± 6% for the metacarpophalangeal joint, respectively. In addition, a biomechanically reasonable joint moment-angle-EMG relationship (i.e., dependence of joint moment on joint angle and EMG) was predicted using only 15 s of collected data. In conclusion, this study illustrates that an RL approach can be an alternative technique to conventional inverse dynamic analysis in human biomechanics study and EMG-driven human-machine interfacing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武雨寒发布了新的文献求助10
4秒前
yy完成签到 ,获得积分0
4秒前
yiqifan完成签到,获得积分0
4秒前
量子星尘发布了新的文献求助10
7秒前
11秒前
zuodadu完成签到,获得积分10
12秒前
月月完成签到,获得积分10
13秒前
sonicker完成签到 ,获得积分10
14秒前
迈克老狼完成签到 ,获得积分10
14秒前
zuodadu发布了新的文献求助10
16秒前
23秒前
x夏天完成签到 ,获得积分10
23秒前
26秒前
penzer完成签到 ,获得积分10
30秒前
科研通AI5应助大祥牛牛牛采纳,获得10
31秒前
不知道完成签到,获得积分10
33秒前
行走的猫完成签到 ,获得积分10
33秒前
三脸茫然完成签到 ,获得积分0
34秒前
愉快无心完成签到 ,获得积分10
43秒前
DongQiu1993发布了新的文献求助10
43秒前
45秒前
情怀应助武雨寒采纳,获得10
49秒前
量子星尘发布了新的文献求助10
53秒前
wuju完成签到,获得积分10
54秒前
科研通AI5应助科研通管家采纳,获得30
57秒前
科研通AI5应助科研通管家采纳,获得30
57秒前
优雅的平安完成签到 ,获得积分10
57秒前
DongQiu1993完成签到 ,获得积分10
59秒前
jw完成签到,获得积分10
1分钟前
1分钟前
玺青一生完成签到 ,获得积分10
1分钟前
C2完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助武雨寒采纳,获得10
1分钟前
优秀棒棒糖完成签到 ,获得积分10
1分钟前
Edward发布了新的文献求助10
1分钟前
victory_liu完成签到,获得积分10
1分钟前
Edward完成签到,获得积分10
1分钟前
1分钟前
忧伤的慕梅完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5162451
求助须知:如何正确求助?哪些是违规求助? 4355630
关于积分的说明 13559898
捐赠科研通 4200487
什么是DOI,文献DOI怎么找? 2303829
邀请新用户注册赠送积分活动 1303798
关于科研通互助平台的介绍 1249967