Using Reinforcement Learning to Estimate Human Joint Moments From Electromyography or Joint Kinematics: An Alternative Solution to Musculoskeletal-Based Biomechanics

运动学 手腕 肌电图 生物力学 接头(建筑物) 力矩(物理) 计算机科学 前臂 掌指关节 逆动力学 物理医学与康复 数学 医学 解剖 工程类 拇指 结构工程 物理 经典力学
作者
Wen Wu,Katherine R. Saul,He Huang
出处
期刊:Journal of biomechanical engineering [ASM International]
卷期号:143 (4) 被引量:27
标识
DOI:10.1115/1.4049333
摘要

Reinforcement learning (RL) has potential to provide innovative solutions to existing challenges in estimating joint moments in motion analysis, such as kinematic or electromyography (EMG) noise and unknown model parameters. Here, we explore feasibility of RL to assist joint moment estimation for biomechanical applications. Forearm and hand kinematics and forearm EMGs from four muscles during free finger and wrist movement were collected from six healthy subjects. Using the proximal policy optimization approach, we trained two types of RL agents that estimated joint moment based on measured kinematics or measured EMGs, respectively. To quantify the performance of trained RL agents, the estimated joint moment was used to drive a forward dynamic model for estimating kinematics, which was then compared with measured kinematics using Pearson correlation coefficient. The results demonstrated that both trained RL agents are feasible to estimate joint moment for wrist and metacarpophalangeal (MCP) joint motion prediction. The correlation coefficients between predicted and measured kinematics, derived from the kinematics-driven agent and subject-specific EMG-driven agents, were 98% ± 1% and 94% ± 3% for the wrist, respectively, and were 95% ± 2% and 84% ± 6% for the metacarpophalangeal joint, respectively. In addition, a biomechanically reasonable joint moment-angle-EMG relationship (i.e., dependence of joint moment on joint angle and EMG) was predicted using only 15 s of collected data. In conclusion, this study illustrates that an RL approach can be an alternative technique to conventional inverse dynamic analysis in human biomechanics study and EMG-driven human-machine interfacing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼与木头发布了新的文献求助10
刚刚
绿泡泡发布了新的文献求助10
1秒前
今后应助Transition采纳,获得10
3秒前
Chelry发布了新的文献求助10
3秒前
大大怪发布了新的文献求助10
4秒前
乐乐应助lina采纳,获得10
6秒前
7秒前
7秒前
gz完成签到,获得积分10
10秒前
哲别发布了新的文献求助10
11秒前
SciGPT应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
义气严青完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
20秒前
某某完成签到,获得积分20
22秒前
23秒前
Owen应助shore采纳,获得10
23秒前
小熊完成签到,获得积分10
24秒前
英姑应助丸子_2025000采纳,获得10
25秒前
yydragen应助rita_sun1969采纳,获得30
25秒前
可爱的函函应助大喵采纳,获得10
26秒前
30秒前
包李发布了新的文献求助10
30秒前
31秒前
打打应助自由的读书人采纳,获得10
35秒前
共享精神应助bbh采纳,获得10
36秒前
研友_VZG7GZ应助bbh采纳,获得10
36秒前
小小完成签到,获得积分10
36秒前
大喵发布了新的文献求助10
36秒前
漫奏曲发布了新的文献求助10
37秒前
40秒前
包李完成签到,获得积分10
44秒前
科研小虫完成签到,获得积分10
47秒前
nianxunxi完成签到,获得积分10
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190