Using Reinforcement Learning to Estimate Human Joint Moments From Electromyography or Joint Kinematics: An Alternative Solution to Musculoskeletal-Based Biomechanics

运动学 手腕 肌电图 生物力学 接头(建筑物) 力矩(物理) 计算机科学 前臂 掌指关节 逆动力学 物理医学与康复 数学 医学 解剖 工程类 拇指 结构工程 物理 经典力学
作者
Wen Wu,Katherine R. Saul,He Huang
出处
期刊:Journal of biomechanical engineering [ASME International]
卷期号:143 (4) 被引量:27
标识
DOI:10.1115/1.4049333
摘要

Reinforcement learning (RL) has potential to provide innovative solutions to existing challenges in estimating joint moments in motion analysis, such as kinematic or electromyography (EMG) noise and unknown model parameters. Here, we explore feasibility of RL to assist joint moment estimation for biomechanical applications. Forearm and hand kinematics and forearm EMGs from four muscles during free finger and wrist movement were collected from six healthy subjects. Using the proximal policy optimization approach, we trained two types of RL agents that estimated joint moment based on measured kinematics or measured EMGs, respectively. To quantify the performance of trained RL agents, the estimated joint moment was used to drive a forward dynamic model for estimating kinematics, which was then compared with measured kinematics using Pearson correlation coefficient. The results demonstrated that both trained RL agents are feasible to estimate joint moment for wrist and metacarpophalangeal (MCP) joint motion prediction. The correlation coefficients between predicted and measured kinematics, derived from the kinematics-driven agent and subject-specific EMG-driven agents, were 98% ± 1% and 94% ± 3% for the wrist, respectively, and were 95% ± 2% and 84% ± 6% for the metacarpophalangeal joint, respectively. In addition, a biomechanically reasonable joint moment-angle-EMG relationship (i.e., dependence of joint moment on joint angle and EMG) was predicted using only 15 s of collected data. In conclusion, this study illustrates that an RL approach can be an alternative technique to conventional inverse dynamic analysis in human biomechanics study and EMG-driven human-machine interfacing applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leemiii完成签到 ,获得积分10
11秒前
小二郎应助科研通管家采纳,获得30
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
shhoing应助科研通管家采纳,获得10
13秒前
fll完成签到 ,获得积分10
31秒前
舒心一凤完成签到 ,获得积分10
34秒前
sxb10101完成签到 ,获得积分10
39秒前
彪悍的熊猫完成签到,获得积分10
41秒前
FashionBoy应助sxb10101采纳,获得10
50秒前
紫枫完成签到,获得积分10
51秒前
一颗红葡萄完成签到 ,获得积分10
1分钟前
suki完成签到 ,获得积分10
1分钟前
龙猫爱看书完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
Sunyidan完成签到,获得积分10
2分钟前
xiaoai完成签到 ,获得积分10
2分钟前
JOKER完成签到 ,获得积分10
2分钟前
gmc完成签到 ,获得积分0
2分钟前
砚木完成签到 ,获得积分10
2分钟前
又又完成签到,获得积分0
2分钟前
炙热曼梅完成签到 ,获得积分10
2分钟前
笨笨忘幽完成签到,获得积分0
2分钟前
沉静的迎荷完成签到 ,获得积分10
3分钟前
小学徒完成签到 ,获得积分10
3分钟前
CLTTT完成签到,获得积分0
3分钟前
矜持完成签到 ,获得积分10
3分钟前
MS903完成签到 ,获得积分10
3分钟前
青水完成签到 ,获得积分10
4分钟前
殷勤的紫槐完成签到,获得积分0
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
huanghe完成签到,获得积分10
4分钟前
风信子完成签到,获得积分10
4分钟前
MM完成签到 ,获得积分10
4分钟前
lpp完成签到 ,获得积分10
4分钟前
活力的珊完成签到 ,获得积分10
5分钟前
5分钟前
小白完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561674
求助须知:如何正确求助?哪些是违规求助? 4646757
关于积分的说明 14678936
捐赠科研通 4588123
什么是DOI,文献DOI怎么找? 2517307
邀请新用户注册赠送积分活动 1490632
关于科研通互助平台的介绍 1461716